Skip to main content
Log in

Reconciliation of Local and Global Symmetries for a Class of Crystals with Defects

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We consider the symmetry of discrete and continuous crystal structures which are compatible with a given choice of dislocation density tensor. By introducing the notion of a ‘defective point group’ (determined by the dislocation density tensor), we generalize the notion of Ericksen–Pitteri neighborhoods to this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Auslander, L., Green, L., Hahn, F.: Flows on Homogeneous Spaces. Annals of Mathematics Studies, vol. 53. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  2. Ball, J.M., James, R.D.: Proposed experimental tests of a theory of fine microstructure and the two-well problem. Philos. Trans. R. Soc. Lond. A 338, 389–450 (1992)

    Article  MATH  ADS  Google Scholar 

  3. Bourbaki, N.: Elements of Mathematics; General Topology. Hermann, Paris (1966)

    Google Scholar 

  4. Cermelli, P., Mazzucco, E.: A note on the model of crystaline defects in Ericksen–Pitteri neighbourhoods. Physica D, Nonlinear Phenom. 99, 350–358 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cermelli, P., Parry, G.P.: The structure of uniform discrete defective crystals. Contin. Mech. Thermodyn. 18, 47–61 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Davini, C.: A proposal for a continuum theory of defective crystals. Arch. Ration. Mech. Anal. 96, 295–317 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ericksen, J.L.: On groups occurring in the theory of crystal multi-lattices. Arch. Ration. Mech. Anal. 148, 145–178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fosdick, R.L., Hertog, B.: Material symmetry and crystals. Arch. Ration. Mech. Anal. 117, 43–72 (1990)

    Article  MathSciNet  Google Scholar 

  9. Hall, P.: A contribution to the theory of groups of prime power order. Proc. Lond. Math. Soc., Ser. 2 36, 29–95 (1933)

    Article  Google Scholar 

  10. Johnson, D.L.: Presentations of Groups, 2nd edn. London Mathematical Society Student Texts, vol. 15. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  11. Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory. Dover, New York (1976)

    MATH  Google Scholar 

  12. Mal’cev, A.: On a class of homogeneous spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 13, 9–32 (1949). Am. Math. Soc. Transl. 39

    MathSciNet  Google Scholar 

  13. Parry, G.P., S̆ilhavý, M.: Elastic scalar invariants in the theory of defective crystals. Proc. R. Soc. Lond. A 455, 4333–4346 (1999)

    Article  MATH  ADS  Google Scholar 

  14. Parry, G.P.: Group properties of defective crystal structures. Math. Mech. Solids 8, 515–537 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Parry, G.P.: Symmetries of continuously defective crystals. In: S̆ilhavý, M. (ed.) Mathematical Modelling of Bodies with Complicated Bulk and Boundary Behaviour. Quaderni di Mathematica, vol. 20, pp. 135–158. (2007). Dipartimento di Matematica della Seconda Università di Napoli

    Google Scholar 

  16. Parry, G.P.: Rotational symmetries of crystals with defects. J. Elast. 94, 147–166 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Parry, G.P.: Elastic symmetries of defective crystals. J. Elast. 101, 101–120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pitteri, M.: Reconciliation of local and global symmetries of crystals. J. Elast. 14, 175–190 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pitteri, M., Zanzotto, G.: Continuum Models for Phase Transitions and Twinning in Crystals. Chapman and Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  20. Thurston, W.: Three Dimensional Geometry and Topology, vol. 1. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth P. Parry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parry, G.P., Sigrist, R. Reconciliation of Local and Global Symmetries for a Class of Crystals with Defects. J Elast 107, 81–104 (2012). https://doi.org/10.1007/s10659-011-9342-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-011-9342-5

Keywords

Mathematics Subject Classification (2000)

Navigation