Skip to main content
Log in

Waves in Fractal Media

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The term fractal was coined by Benoît Mandelbrot to denote an object that is broken or fractured in space or time. Fractals provide appropriate models for many media for some finite range of length scales with lower and upper cutoffs. Fractal geometric structures with cutoffs are called pre-fractals. By fractal media, we mean media with pre-fractal geometric structures. The basis of this study is the recently formulated extension of continuum thermomechanics to such media. The continuum theory is based on dimensional regularization, in which we employ fractional integrals to state global balance laws. The global forms of governing equations are cast in forms involving conventional (integer-order) integrals, while the local forms are expressed through partial differential equations with derivatives of integer order. Using Hamilton’s principle, we derive the equations of motion of a fractal elastic solid under finite strains. Next, we consider one-dimensional models and obtain equations governing nonlinear waves in such a solid. Finally, we study shock fronts in linear viscoelastic solids under small strains. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions and reduce to conventional forms for continuous media with Euclidean geometries upon setting the dimensions to integers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, New York (1982)

    MATH  Google Scholar 

  2. Barnsley, M.F.: Fractals Everywhere. Morgan Kaufmann, San Mateo (1993)

    MATH  Google Scholar 

  3. Feder, J.: Fractals (Physics of Solids and Liquids). Springer, Berlin (2007)

    Google Scholar 

  4. Tarasov, V.E.: Continuous medium model for fractal media. Phys. Lett. A 336, 167–174 (2005)

    Article  ADS  MATH  Google Scholar 

  5. Tarasov, V.E.: Fractional hydrodynamic equations for fractal media. Ann. Phys. 318(2), 286–307 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Tarasov, V.E.: Wave equation for fractal solid string. Mod. Phys. Lett. B 19(15), 721–728 (2005)

    Article  ADS  MATH  Google Scholar 

  7. Collins, J.C.: Renormalization. Cambridge University Press, Cambridge (1984)

    Book  MATH  Google Scholar 

  8. Ostoja-Starzewski, M.: Towards thermomechanics of fractal media. Z. Angew. Math. Phys. 58(6), 1085–1096 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ostoja-Starzewski, M.: Extremum and variational principles for elastic and inelastic media with fractal geometries. Acta Mech. 205, 161–170 (2009)

    Article  MATH  Google Scholar 

  10. Ostoja-Starzewski, M.: On turbulence in fractal porous media. Z. Angew. Math. Phys. 59(6), 1111–1117 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, J., Ostoja-Starzewski, M.: Fractal materials, beams and fracture mechanics. Z. Angew. Math. Phys. 60, 1–12 (2009)

    Article  MathSciNet  Google Scholar 

  12. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, London (2009)

    Book  Google Scholar 

  13. Li, J., Ostoja-Starzewski, M.: Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465, 2521–2536 (2009). doi:10.1098/rspa.2009.0101. Errata (2010) doi:10.1098/rspa.2010.0491

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Li, J., Ostoja-Starzewski, M.: Fractal solids, product measures and continuum mechanics. In: Maugin, G.A., Metrikine, A.V. (eds.) Mechanics of Generalized Continua: One Hundred Years After the Cosserats, pp. 315–323. Springer, Berlin (2010). Chap. 33

    Google Scholar 

  15. Li, J., Ostoja-Starzewski, M.: Micropolar continuum mechanics of fractal media. Int. J. Eng. Sci. (A.C. Eringen special issue) (2011, to appear)

  16. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (2003)

    Book  MATH  Google Scholar 

  17. Temam, R., Miranville, A.: Mathematical Modeling in Continuum Mechanics. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  18. Jumarie, G.: On the representation of fractional Brownian motion as an integral with respect to (dt)a. Appl. Math. Lett. 18, 739–748 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  21. Carpinteri, A., Pugno, N.: Are scaling laws on strength of solids related to mechanics or to geometry? Nat. Mater. 4, 421–23 (2005)

    Article  ADS  Google Scholar 

  22. Rymarz, C.: Mechanics of Continuous Media. PWN, Warsaw (1993)

    Google Scholar 

  23. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  24. Joumaa, H., Ostoja-Starzewski, M.: On the wave propagation in isotropic fractal media. Z. Angew. Math. Phys. (2011, to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ostoja-Starzewski.

Additional information

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demmie, P.N., Ostoja-Starzewski, M. Waves in Fractal Media. J Elast 104, 187–204 (2011). https://doi.org/10.1007/s10659-011-9333-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-011-9333-6

Keywords

Mathematics Subject Classification (2000)

Navigation