Skip to main content
Log in

On the Thermodynamics of Korteweg Fluids with Heat Conduction and Viscosity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A model of third-grade Korteweg fluid with heat conduction and viscosity is developed. The restrictions placed by the Dissipation Principle are investigated by applying two different methods which generalize the classical Coleman-Noll and Liu procedures. Compatibility with thermodynamics is achieved for arbitrary form of the energy and entropy fluxes. In the one-dimensional case a particular solution of the system of thermodynamic restrictions is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korteweg, D.J.: Sur la forme qui prennent les équations du mouvement des fluids si l’on tient compte des forces capillaires par des variations de densité. Arch. Neerl. Sci. Exactes Nat., Ser. II 6, 1–24 (1901)

    MATH  Google Scholar 

  2. Sansone, E.: Deduzione della teoria dei fluidi maxwelliani dalla termodinamica dei sistemi continui. Rend. Semin. Mat. Univ. Padova 5, 39–52 (1977)

    MathSciNet  Google Scholar 

  3. Truesdell, C., Noll, W.: The nonlinear field theories of mechanics. In: Encyclopedia of Physics, vol. III/3. Springer, Berlin (1965)

    Google Scholar 

  4. Dunn, J.E., Serrin, J.: On the thermomechanics of the interstitial working. Arch. Ration. Mech. Anal. 88, 95–133 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gurtin, M.E., Vianello, M., Williams, W.O.: On fluids of grade n. Meccanica 21, 179–183 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Toupin, R.A.: Elastic materials with couple stress. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Toupin, R.A.: Theories of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aifantis, E.C., Serrin, J.: The mechanical theory of fluid interfaces and Maxwell’s rule. J. Colloid Interface Sci. 96, 517–529 (1983)

    Article  Google Scholar 

  9. Aifantis, E.C., Serrin, J.: Equilibrium solutions in the mechanical theory of fluid microstructures. J. Colloid Interface Sci. 96, 530–547 (1983)

    Article  Google Scholar 

  10. Slemrod, M.: Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Ration. Mech. Anal. 81, 301–315 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Slemrod, M.: Dynamic phase transitions in a van der Waals fluid. J. Differential Equations 52, 1–23 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fried, E., Gurtin, M.E.: Continuum theory of thermally induced phase transitions based on an order parameter. Physica D 68, 326–343 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Fried, E., Gurtin, M.E.: Dynamic solid-solid transitions with phase characterized by an order parameter. Physica D 72, 287–308 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Gurtin, M.E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fabrizio, M., Giorgi, C., Morro, A.: A thermodynamic approach to nonisothermal phase-field evolution in continuum physics. Physica D 214, 144–156 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Morro, A.: Non-isothermal phase-field models and evolution equation. Arch. Mech. 58, 207–221 (2006)

    MathSciNet  Google Scholar 

  17. Morro, A.: Unified approach to evolution equations for non-isothermal phase transitions. Appl. Math. Sci. 1, 339–353 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Frémond, M.: Non-smooth Thermomechanics. Springer, Berlin (2001)

    Google Scholar 

  19. Aifantis, E.C.: Pattern formation in plasticity. Int. J. Eng. Sci. 33, 2161–2178 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Aifantis, E.C.: Gradient deformation models at nano, micro, and macroscales. J. Eng. Mater. Technol. 121, 189–202 (1999)

    Article  Google Scholar 

  21. Aifantis, E.C.: Strain gradient interpretation of size effects. Int. J. Fract. 95, 229–314 (1999)

    Article  Google Scholar 

  22. Askes, H., Aifantis, E.C.: Gradient elasticity and flexural wave dispersion in carbon nanotubes. Phys. Rev. B 80, 195412 (2009) (8 pages)

    Article  ADS  Google Scholar 

  23. Dunn, J.E.: Interstitial working and a nonclassical continuum thermodynamics. In: Serrin, J. (ed.) New Perspectives in Thermodynamics, pp. 187–222. Springer, Berlin (1986)

    Chapter  Google Scholar 

  24. Müller, I.: On the entropy inequality. Arch. Ration. Mech. Anal. 26, 118–141 (1967)

    Article  MATH  Google Scholar 

  25. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  27. Lebon, G., Jou, D., Casas-Vázquez, J., Muschik, W.: Weakly nonlocal and nonlinear heat transport in rigid solids. J. Non-Equilib. Thermodyn. 23, 176–191 (1998)

    Article  ADS  MATH  Google Scholar 

  28. Coleman, B.D., Mizel, V.J.: Thermodynamics and departures from Fourier’s law of heat conduction. Arch. Ration. Mech. Anal. 13, 245–260 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, I-Shih: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Ration. Mech. Anal. 46, 131–148 (1972)

    MATH  Google Scholar 

  30. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  31. Coleman, B.D., Fabrizio, M., Owen, D.R.: The thermodynamics of second sound in crystals. Arch. Ration. Mech. Anal. 80, 135–158 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cimmelli, V.A., Sellitto, A., Triani, V.: A generalized Coleman-Noll procedure for the exploitation of the entropy principle. Proc. R. Soc. A 466, 911–925 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Cimmelli, V.A., Sellitto, A., Triani, V.: A new perspective on the form of first and second laws in rational thermodynamics: Korteweg fluids as an example. J. Non-Equilib. Thermodyn. 35, 251–265 (2010)

    Article  ADS  MATH  Google Scholar 

  34. Cimmelli, V.A., Sellitto, A., Triani, V.: A new thermodynamic framework for second-grade Korteweg-type viscous fluids. J. Math. Phys. 50, 053101 (2009) (16 pages)

    Article  MathSciNet  ADS  Google Scholar 

  35. Cimmelli, V.A.: An extension of Liu procedure in weakly nonlocal thermodynamics. J. Math. Phys. 48, 113510 (2007) (13 pages)

    Article  MathSciNet  ADS  Google Scholar 

  36. Muschik, W., Papenfuss, C., Triani, V.: Exploitation of the entropy inequality, if some balances are missing. J. Mech. Mater. Struct. 3, 1125–1133 (2008)

    Article  Google Scholar 

  37. Cimmelli, V.A., Oliveri, F., Triani, V.: Exploitation of the entropy principle: proof of Liu Theorem if the gradients of the governing equations are considered as constraints. J. Math. Phys. 52 (2011, in press)

  38. Truesdell, C.: A First Course in Rational Continuum Mechanics, 2nd edn. Academic Press, San Diego (1991)

    MATH  Google Scholar 

  39. Triani, V., Papenfuss, C., Cimmelli, V.A., Muschik, W.: Exploitation of the second law: Coleman–Noll and Liu procedure in comparison. J. Non-Equilib. Thermodyn. 33, 47–60 (2008)

    Article  ADS  MATH  Google Scholar 

  40. Antanovskii, L.K.: A phase-field model of capillarity. Phys. Fluids 7, 747–753 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse–interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  42. Verhás, J.: Thermodynamics and Rheology. Kluwer Academic, Dordrecht (1997)

    MATH  Google Scholar 

  43. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  44. Speziale, C.G.: A review of material frame-indifference in mechanics. Appl. Mech. Rev. 51, 489–504 (1998)

    Article  ADS  Google Scholar 

  45. Svendsen, B., Bertram, A.: On frame-indifference and form-invariance in constitutive theory. Acta Mech. 132, 195–207 (1999)

    Article  MathSciNet  Google Scholar 

  46. Muschik, W., Restuccia, L.: Systematic remarks on objectivity and frame-indifference, liquid crystal theory as an example. Arch. Appl. Mech. 78, 837–854 (2008)

    Article  ADS  MATH  Google Scholar 

  47. Murdoch, A.I.: Objectivity in classical continuum physics: a rationale for discarding the ‘principle of invariance under superposed rigid body motions’ in favour of purely objective considerations. Contin. Mech. Thermodyn. 15, 309–320 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Murdoch, A.I.: On criticism of the nature of objectivity in classical continuum physics. Contin. Mech. Thermodyn. 17, 135–148 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Liu, I-Shih: On Euclidean objectivity and the principle of material frame-indifference. Contin. Mech. Thermodyn. 16, 177–183 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Liu, I-Shih: Further remarks on Euclidean objectivity and the principle of material frame indifference. Contin. Mech. Thermodyn. 17, 125–133 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Cimmelli.

Additional information

In memoriam of Prof. Donald E. Carlson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimmelli, V.A., Oliveri, F. & Pace, A.R. On the Thermodynamics of Korteweg Fluids with Heat Conduction and Viscosity. J Elast 104, 115–131 (2011). https://doi.org/10.1007/s10659-011-9320-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-011-9320-y

Keywords

Mathematics Subject Classification (2000)

Navigation