Skip to main content
Log in

On the Normal Stresses in Simple Shearing of Fiber-Reinforced Nonlinearly Elastic Materials

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We are concerned with a particular aspect of the simple shear problem within the framework of nonlinear elasticity for a class of incompressible transversely-isotropic fiber-reinforced materials. It is well known that, for isotropic hyperelastic materials, the normal stress effect characteristic of nonlinear elasticity is crucial in order to maintain a homogeneous deformation state in the bulk of the specimen. For the fiber-reinforced materials of concern here, we show that the confining traction that needs to be applied to the top and bottom faces of a block in order to maintain simple shear can be compressive or tensile depending on the degree of anisotropy and on the angle of orientation of the fibers. Inclusion of the second invariant in the isotropic part of the strain-energy used is shown to be of crucial importance in assessing the nature of the confining traction. In the absence of such an applied traction, an unconfined sample tends to bulge outwards or contract inwards perpendicular to the direction of shear. The character of the normal component of traction on the inclined faces is also investigated. The results are relevant to the development of accurate shear test protocols for the determination of constitutive properties of fiber-reinforced rubber-like materials and fibrous biological soft tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkin, R.J., Fox, N.: An Introduction to the Theory of Elasticity. Longman, Harlow (1980). Reprinted by Dover, NY (2005)

    MATH  Google Scholar 

  2. Beatty, M.F.: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Rev. 40, 1699–1733 (1987). Reprinted with minor modifications as “Introduction to nonlinear elasticity” in: Carroll, M.M., Hayes, M.A. (eds.) Nonlinear Effects in Fluids and Solids, pp. 16–112. Plenum Press, New York (1996)

    Article  ADS  Google Scholar 

  3. Destrade, M., Gilchrist, M.D., Prikazchikov, D.A., Saccomandi, G.: Surface instability of sheared soft tissues. J. Biomech. Eng. 130, 061007 (2008)

    Article  Google Scholar 

  4. Dokos, S., LeGrice, I.J., Smaill, B.H., Kar, J., Young, A.A.: A triaxial-measurement shear-test device for soft biological tissues. J. Biomech. Eng. 122, 471–478 (2000)

    Article  Google Scholar 

  5. Dokos, S., Smaill, B.H., Young, A.A., LeGrice, I.J.: Shear properties of passive ventricular myocardium. Am. J. Physiol., Heart Circ. Physiol. 283, H2650–H2659 (2002)

    Google Scholar 

  6. Gardiner, J.C., Weiss, J.A.: Simple shear testing of parallel-fibered planar soft tissues. J. Biomech. Eng. 123, 170–175 (2001)

    Article  Google Scholar 

  7. Guo, D.-L., Chen, B.-S., Liou, N.-S.: Investigating full-field deformation of planar soft tissue under simple-shear tests. J. Biomech. 40, 1165–1170 (2007)

    Article  Google Scholar 

  8. Holzapfel, G.A., Ogden, R.W.: Constitutive modeling of passive myocardium: a structurally-based framework for material characterization. Philos. Trans. R. Soc. Lond. 367, 3445–3475 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Holzapfel, G.A., Ogden, R.W.: On planar biaxial tests for anisotropic nonlinearly elastic solids. Math. Mech. Solids 14, 474–489 (2009)

    Article  Google Scholar 

  10. Holzapfel, G.A., Ogden, R.W.: Constitutive modeling of arteries. Proc. R. Soc. Lond. A 466, 1551–1597 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Horgan, C.O., Murphy, J.G.: Simple shearing of incompressible and slightly compressible isotropic nonlinearly elastic materials. J. Elast. 98, 205–221 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horgan, C.O., Murphy, J.G.: Simple shearing of soft biological tissues. Proc. R. Soc. Lond. A (2010). doi:10.1098/rspa.2010.0288

    MATH  Google Scholar 

  13. Horgan, C.O., Murphy, J.G.: Torsion of incompressible fiber-reinforced nonlinearly elastic circular cylinders. J. Elast. (2011). doi:10.1007/s10659-010-9282-5

    MATH  Google Scholar 

  14. Horgan, C.O., Polignone, D.A.: Cavitation in nonlinearly elastic solids: a review. Appl. Mech. Rev. 48, 471–485 (1995)

    Article  ADS  Google Scholar 

  15. Horgan, C.O., Saccomandi, G.: A new constitutive model for fiber-reinforced incompressible nonlinearly elastic solids. J. Mech. Phys. Solids 53, 1985–2015 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  16. Horgan, C.O., Saccomandi, G.: Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem. Technol. 79, 152–169 (2006)

    Article  Google Scholar 

  17. Humphrey, J.D.: Cardiovascular Solid Mechanics. Springer, New York (2002)

    Google Scholar 

  18. Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible nonlinear elastic solids. Int. J. Non-Linear Mech. 40, 213–227 (2005)

    Article  ADS  MATH  Google Scholar 

  19. Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation I. J. Elast. 62, 119–144 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Merodio, J., Saccomandi, G.: Remarks on cavity formation in fiber-reinforced incompressible non-linearly elastic solids. Eur. J. Mech. A, Solids 25, 778–792 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Merodio, J., Saccomandi, G., Sgura, I.: The rectilinear shear of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 41, 1103–1115 (2006)

    Article  Google Scholar 

  22. Ning, X., Zhu, Q., Lanir, Y., Margulies, S.S.: A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. J. Biomech. Eng. 128, 925–933 (2006)

    Article  Google Scholar 

  23. Ogden, R.W.: Elements of the theory of finite elasticity. In: Fu, Y.B., Ogden, R.W. (eds.) Nonlinear Elasticity: Theory and Applications. London Mathematical Society Lecture Notes Series, vol. 283, pp. 1–57. Cambridge University Press, Cambridge (2001)

    Chapter  Google Scholar 

  24. Polignone, D.A., Horgan, C.O.: Cavitation for incompressible anisotropic nonlinearly elastic spheres. J. Elast. 33, 27–65 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Qiu, G.Y., Pence, T.J.: Remarks on the behavior of simple directionally reinforced incompressible nonlinearly elastic solids. J. Elast. 49, 1–30 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rivlin, R.S.: Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A 241, 379–397 (1948)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Sacks, M.S., Sun, W.: Multiaxial mechanical behavior of biological materials. Annu. Rev. Biomed. Eng. 5, 251–284 (2003)

    Article  Google Scholar 

  28. Schmid, H., Nash, M.P., Young, A.A., Hunter, P.J.: Myocardial material parameter estimation-a comparative study for simple shear. J. Biomech. Eng. 128, 742–750 (2006)

    Article  Google Scholar 

  29. Schmid, H., O’Callaghan, P., Nash, M.P., Lin, W., LeGrice, I.J., Smaill, B.H., Young, A.A., Hunter, P.J.: Myocardial material parameter estimation-a non-homogeneous finite element study from simple shear tests. Biomech. Model. Mechanobiol. 7, 161–173 (2008)

    Article  Google Scholar 

  30. Taber, L.A.: Nonlinear Theory of Elasticity: Applications in Biomechanics. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius O. Horgan.

Additional information

Dedicated to the memory of Don Carlson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horgan, C.O., Murphy, J.G. On the Normal Stresses in Simple Shearing of Fiber-Reinforced Nonlinearly Elastic Materials. J Elast 104, 343–355 (2011). https://doi.org/10.1007/s10659-011-9310-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-011-9310-0

Keywords

Mathematics Subject Classification (2000)

Navigation