Skip to main content
Log in

Huxley’s Model of Muscle Contraction with Compliance

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Huxley’s cross-bridge dynamics of muscle contraction is widely used in understanding, in particular, laboratory experiments on muscles and subunits of muscle. The hard-connection version of the model has several defects. In this paper I present a detailed and precise method of solution of the problem with a compliant element in series with the muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagni, M.A., Cecchi, G., Colombin, B., Colomo, F.: Sarcomere tension–stiffness relation during the tetanus rise in single frog muscle fibres. J. Muscle Res. Cell Motil. 20, 469–476 (1999)

    Article  Google Scholar 

  2. Bagni, M.A., Cecchi, G., Colombini, B., Colomo, F.: A non-cross-bridge stiffness in activated frog muscle fibers. Biophys. J. 82, 3118–3127 (2002)

    Article  Google Scholar 

  3. Bagni, M.A., Cecchi, G., Schoenberg, M.: A model of force production that explains the lag between crossbridge attachment and force after electrical stimulation of striated muscle fibers. Biophys. J. 54, 1105–1114 (1988)

    Article  Google Scholar 

  4. Bennett, A.F.: Temperature and muscle. J. Exp. Biol. 115, 333–344 (1985)

    Google Scholar 

  5. Campbell, K.: Filament compliance effects can explain tension overshoots during force development. Biophys. J. 91, 4102–4109 (2006)

    Article  ADS  Google Scholar 

  6. Cecchi, G., Griffiths, P.J., Taylor, S.: Muscular contraction: Kinetics of crossbridge attachment studied by high-frequency stiffness measurements. Science 217, 70–72 (1982)

    Article  ADS  Google Scholar 

  7. Chase, P.B., Macpherson, J.M., Daniel, T.L.: A spatially explicit nanomechanical model of the half-sarcomere: Myofilament compliance affects ca2+-activation. Ann. Biomed. Eng. 32, 1559–1568 (2004)

    Article  Google Scholar 

  8. Daniel, T.L., Trimble, A.C., Chase, P.B.: Compliant realignment of binding sites in muscle: Transient behavior and mechanical tuning. Biophys. J. 74, 1611–1621 (1998)

    Article  ADS  Google Scholar 

  9. Duke, T.A.J.: Molecular model of muscle contraction. Proc. Natl. Acad. Sci. 96, 2770–2775 (1999)

    Article  ADS  Google Scholar 

  10. Forcinito, M., Epstein, M., Herzog, W.: Theoretical considerations on myofibril stiffness. Biophys. J. 72, 1278–1286 (1997)

    Article  ADS  Google Scholar 

  11. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993)

    Google Scholar 

  12. Goldman, Y.E., Huxley, A.F.: Actin compliance: are you pulling my chain? Biophys. J. 67, 2131–2133 (1994)

    Article  ADS  Google Scholar 

  13. Hill, A.V.: The effect of series compliance on the tension developed in a muscle twitch. Proc. R. Soc. Lond. B 138, 325–329 (1951)

    Article  ADS  Google Scholar 

  14. Hill, A.V.: The influence of temperature on the tension developed in an isometric twitch. Proc. R. Soc. Lond. B 138, 349–354 (1951)

    Article  ADS  Google Scholar 

  15. Huxley, A.F.: Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957)

    Google Scholar 

  16. Huxley, A.F., Tideswell, S.: Filament compliance and tension transients in muscle. J. Muscle Res. Cell Motil. 17, 507–511 (1996)

    Article  Google Scholar 

  17. Huxley, H.E., Stewart, A., Sosa, H., Irving, T.: X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys. J. 67, 2411–2421 (1994)

    Article  ADS  Google Scholar 

  18. Julian, F.: Activation in a skeletal muscle contraction model with a modification for insect fibrillar muscle. Biophys. J. 9, 547–570 (1969)

    Article  ADS  Google Scholar 

  19. Kawai, M., Halvorson, H.R.: Force transients and minimum cross-bridge models in muscular contraction. J. Muscle Res. Cell Motil. 28, 371–395 (2007)

    Article  Google Scholar 

  20. Keener, J., Sneyd, N.: Mathematical Physiology. Springer, New York (1998). Chap. 18, pp. 542–578

    MATH  Google Scholar 

  21. Luo, Y., Cooke, R., Pate, E.: A model of stress relaxation in cross-bridge systems: effect of a series elastic element. Am. J. Physiol. 265, C279–C288 (1993)

    Google Scholar 

  22. Luo, Y., Cooke, R., Pate, E.: Effect of series elasticity on delay in development of tension relative to stiffness during muscle activation. Am. J. Physiol. 267, C1598–C1606 (1994)

    Google Scholar 

  23. Martyn, D., Chase, P., Regnier, M., Gordon, A.: A simple model with myofilament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers. Biophys. J. 83, 3425–3434 (2002)

    Article  ADS  Google Scholar 

  24. Mijailovich, S., Fredberg, J., Butler, J.: On the theory of muscle contraction: filament extensibility and the development of isometric force and stiffness. Biophys. J. 71, 1475–1484 (1996)

    Article  ADS  Google Scholar 

  25. Perreault, E.J., Day, S.J., Hulliger, Heckman, C.J., Sandercock, T.G.: Summation of forces from multiple motor units in the cat soleus muscle. J. Neurophysiol. 89, 738–744 (2003)

    Article  Google Scholar 

  26. Proske, U., Morgan, D.L.: Do cross-bridges contribute to the tension during stretch of passive muscle? J. Muscle Res. Cell Motil. 20, 433–442 (1999)

    Article  Google Scholar 

  27. Smith, D.A., Geeves, M.: Strain-dependent cross-bridge cycle for muscle. Biophys. J. 69, 524–537 (1995)

    Article  ADS  Google Scholar 

  28. Smith, D.A., Geeves, M.A.: Strain-dependent cross-bridge cycle for muscle. II. Steady-state behavior. Biophys. J. 69, 538–552 (1995)

    Article  ADS  Google Scholar 

  29. Smith, N.P., Barclay, C.J., Loiselle, D.S.: The efficiency of muscle contraction. Prog. Biophys. Mol. Biol. 88, 1–58 (2005)

    Article  Google Scholar 

  30. Sugi, H., Kobayashi, T.: Sarcomere length and tension changes in tetanized frog muscle fibers after quick stretches and releases. Proc. Natl. Acad. Sci. 80, 6422–6425 (1983)

    Article  ADS  Google Scholar 

  31. Thorson, J., White, D.C.S.: Distributed representations of actin-myosin interaction in the oscillatory contraction of muscle. Biophys. J. 9, 360–389 (1969)

    Article  ADS  Google Scholar 

  32. Torelli, A.: Study of a mathematical model for muscle contraction with deformable elements. Rend. Semin. Mat. (Torino) 55, 241–271 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Wakabayashi, K., Sugimoto, Y., Tanaka, H., Ueno, Y., Takezawa, Y., Amemiya, Y.: X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys. J. 67, 2422–2435 (1994)

    Article  ADS  Google Scholar 

  34. Wang, G., Ding, W., Kawai, M.: Does thin filament compliance diminish the cross-bridge kinetics? A study in rabbit psoas fibers. Biophys. J. 76, 978–984 (1999)

    Article  ADS  Google Scholar 

  35. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and applications to biometrics and motor control. Crit. Rev. Biomed. Eng. 17, 359–411 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. O. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, W.O. Huxley’s Model of Muscle Contraction with Compliance. J Elast 105, 365–380 (2011). https://doi.org/10.1007/s10659-011-9304-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-011-9304-y

Keywords

Mathematics Subject Classification (2000)

Navigation