Skip to main content
Log in

Evolution Equations for Non-Simple Viscoelastic Solids

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Objectivity and compatibility with thermodynamics of evolution equations are examined in connection with the modelling of viscoelastic solids. The purpose of the paper is to show that the evolution equation for the stress is eventually obtained by means of a tensorial internal variable within the framework of the reference configuration. The non-simple character is realized by gradients of the internal variable. The thermodynamic analysis is developed by investigating the entropy inequality in the reference configuration and allowing for a non-zero extra-entropy flux. It follows that the evolution for the Cauchy stress tensor involves the Oldroyd derivative, irrespective of the form of the non-local terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, H.W., Pawlow, I.: A mathematical model of dynamics of non-isothermal phase separation. Physica D 59, 389–416 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bampi, F., Morro, A.: Objectivity and objective time derivatives in continuum physics. Found. Phys. 10, 905–920 (1980)

    Article  ADS  Google Scholar 

  3. Carlson, D.E.: Linear thermoelasticity. In: Flügge, S. (ed.) Encyclopedia of Physics, VIa2, Mechanics of Solids II. Springer, Berlin (1972). Chap. 5

    Google Scholar 

  4. Christov, C.I.: On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36, 481–486 (2009)

    Article  MathSciNet  Google Scholar 

  5. Christov, P.M.J.: Heat conduction paradox involving second sound propagation in moving media. Phys. Rev. Lett. 94, 154301 (2005)

    Article  ADS  Google Scholar 

  6. Coleman, B.D., Gurtin, M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)

    Article  ADS  Google Scholar 

  7. de Gennes, P.-G., Prost, J.: The Physics of Liquid Crystals. Clarendon, Oxford (1993)

    Google Scholar 

  8. Dill, E.H.: Simple materials with fading memory. In: Eringen, A.C. (ed.) Continuum Physics II, p. 283–403. Academic Press, New York (1975)

    Google Scholar 

  9. Fabrizio, M., Giorgi, C., Morro, A.: A thermodynamic approach to non-isothermal phase-field evolution in continuum physics. Physica D 214, 144–156 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Fabrizio, M., Morro, A.: Electromagnetism of Continuous Media. Oxford University Press, London (2003). Chap. 1.7

    Book  MATH  Google Scholar 

  11. Fox, N.: Generalized thermoelasticity. Int. J. Eng. Sci. 7, 437–445 (1969)

    Article  MATH  Google Scholar 

  12. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981). Chap. 9

    MATH  Google Scholar 

  13. Guyer, R.A., Krumhansl, J.A.: Solution to the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)

    Article  ADS  Google Scholar 

  14. Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)

    Article  ADS  Google Scholar 

  15. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended irreversible thermodynamics revisited (1988–1998). Rep. Prog. Phys. 62, 1035–1142 (1999)

    Article  ADS  Google Scholar 

  16. Jou, D., Lebon, G., Mongiovì, M.S., Peruzza, R.A.: Entropy flux in non-equilibrium thermodynamics. Physica A 338, 445–457 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  17. Haslach, H.W. Jr.: Thermodynamically consistent, maximum dissipation, time-dependent models for non-equilibrium behavior. Int. J. Solids Struct. 46, 3964–3976 (2009)

    Article  Google Scholar 

  18. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. North Holland, Amsterdam (1988). Chap. 3

    MATH  Google Scholar 

  19. Müller, I., Ruggeri, T.: Extended Thermodynamics. Springer, New York (1993)

    Book  MATH  Google Scholar 

  20. Marsden, J.D., Hughes, T.: Mathematical Foundations of Elasticity. Dover, New York (1994)

    Google Scholar 

  21. Morro, A.: Evolution equations and thermodynamic restrictions for dissipative solids. Math. Comput. Model. 52, 1869–1876 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Morro, A., Payne, L.E., Straughan, B.: Decay, growth, continuous dependence and uniqueness results in generalized heat conduction theories. Appl. Anal. 38, 231–243 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Olmsted, P.D., Goldbart, P.M.: Isotropic-nematic transition in shear flow: state selection, coexistence, phase transitions, and critical behaviour. Phys. Rev. A 46, 4966–4993 (1992)

    Article  ADS  Google Scholar 

  24. Truesdell, C., Noll, W.: Non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics, III/3. Springer, Berlin (1965)

    Google Scholar 

  25. Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Physics, III/1. Springer, Berlin (1960). Chap. 20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Morro.

Additional information

Dedicated to the memory of D.E. Carlson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morro, A. Evolution Equations for Non-Simple Viscoelastic Solids. J Elast 105, 93–105 (2011). https://doi.org/10.1007/s10659-010-9292-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-010-9292-3

Keywords

Mathematics Subject Classification (2000)

Navigation