Skip to main content
Log in

Torsion of Incompressible Fiber-Reinforced Nonlinearly Elastic Circular Cylinders

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Torsion of solid cylinders in the context of nonlinear elasticity theory has been widely investigated with application to the behavior of rubber-like materials. More recently, this problem has attracted attention in investigations of the biomechanics of soft tissues and has been applied, for example, to examine the mechanical behavior of passive papillary muscles of the heart. A recent study in nonlinear elasticity was concerned specifically with the effects of strain-stiffening on the torsional response of solid circular cylinders. The cylinders are composed of incompressible isotropic nonlinearly elastic materials that undergo severe strain-stiffening in the stress-stretch response. Here we investigate similar issues for fiber-reinforced transversely-isotropic circular cylinders. We consider a class of incompressible anisotropic materials with strain-energy densities that are of logarithmic form in the anisotropic invariant. These models reflect stretch induced strain-stiffening of collagen fibers on loading and have been shown to model the mechanical behavior of many fibrous soft biological tissues. The consideration of anisotropy leads to a more elaborate mechanical response than was found for isotropic strain-stiffening materials. The classic Poynting effect found for rubber-like materials where torsion induces elongation of the cylinder is shown to be significantly different for the transversely-isotropic materials considered here. For sufficiently large anisotropy and under certain conditions on the amount of twist, a reverse-Poynting effect is demonstrated where the cylinder tends to shorten on twisting The results obtained here have important implications for the development of accurate torsion test protocols for determination of material properties of soft tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Criscione, J.C., Lorenzen-Schmidt, I., Humphrey, J.D., Hunter, W.C.: Mechanical contribution of endocardium during finite extension and torsion experiments on papillary muscle. Ann. Biomed. Eng. 27, 123–130 (1999)

    Article  Google Scholar 

  2. Destrade, M., Gilchrist, M.D., Prikazchikov, D.A, Saccomandi, G.: Surface instability of sheared soft tissues. J. Biomech. Eng. 130, 061007 (2008)

    Article  Google Scholar 

  3. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  4. Holzapfel, G.A.: Nonlinear Solid Mechanics. Wiley, Chichester (2000)

    MATH  Google Scholar 

  5. Holzapfel, G.A.: Similarities between soft biological tissues and rubberlike materials. In: Austrell, P.E., Kari, L. (eds.) Constitutive Models for Rubber IV, Proceedings of the 4th European Conference on “Constitutive Models for Rubber” (ECCMR 2005), Stockholm, Sweden, pp. 607–617. Balkema, Lisse (2005)

    Google Scholar 

  6. Horgan, C.O., Murphy, J.G.: Simple shearing of incompressible and slightly compressible isotropic nonlinearly elastic materials. J. Elast. 98, 205–221 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Horgan, C.O., Murphy, J.G.: Simple shearing of soft biological tissues. Proc. R. Soc. Lond. A (2010). doi:10.1098/rspa.2010.0288

  8. Horgan, C.O., Polignone, D.A.: Cavitation in nonlinearly elastic solids: a review. Appl. Mech. Rev. 48, 471–485 (1995)

    Article  ADS  Google Scholar 

  9. Horgan, C.O., Saccomandi, G.: A description of arterial wall mechanics using limiting chain extensibility constitutive models. Biomech. Model. Mechanobiol. 1, 251–266 (2003)

    Article  Google Scholar 

  10. Horgan, C.O., Saccomandi, G.: A new constitutive model for fiber-reinforced incompressible nonlinearly elastic solids. J. Mech. Phys. Solids 53, 1985–2015 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  11. Horgan, C.O., Saccomandi, G.: Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem. Technol. 79, 152–169 (2006)

    Article  Google Scholar 

  12. Hoskins, P.R.: Physical properties of tissues relevant to arterial ultrasound imaging and blood velocity measurement. Ultrasound Med. Biol. 33, 1527–1539 (2007)

    Article  Google Scholar 

  13. Humphrey, J.D.: Cardiovascular Solid Mechanics. Springer, New York (2002)

    Google Scholar 

  14. Humphrey, J.D., Barazotto, R.L. Jr., Hunter, W.C.: Finite extension and torsion of papillary muscles: a theoretical framework. J. Biomech. 25, 541–547 (1992)

    Article  Google Scholar 

  15. Kanner, L.M., Horgan, C.O.: On extension and torsion of strain-stiffening rubber-like elastic cylinders. J. Elast. 93, 39–61 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lin, H.T., Dorfmann, A.L., Trimmer, B.A.: Soft-cuticle biomechanics: a constitutive model of anisotropy for caterpillar integument. J. Theor. Biol. 256, 447–457 (2009)

    Article  Google Scholar 

  17. Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible nonlinear elastic solids. Int. J. Nonlin. Mech. 40, 213–227 (2005)

    Article  MATH  Google Scholar 

  18. Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation I. J. Elast. 62, 119–144 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Merodio, J., Saccomandi, G.: Remarks on cavity formation in fiber-reinforced incompressible non-linearly elastic solids. Eur. J. Mech. A, Solids 25, 778–792 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Merodio, J., Saccomandi, G., Sgura, I.: The rectilinear shear of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Nonlin. Mech. 41, 1103–1115 (2006)

    Article  Google Scholar 

  21. Ogden, R.W.: Elements of the theory of finite elasticity. In: Fu, Y.B., Ogden, R.W. (eds.) Nonlinear Elasticity: Theory and Applications. London Mathematical Society Lecture Notes Series, vol. 283, pp. 1–57. Cambridge University Press, Cambridge (2001)

    Chapter  Google Scholar 

  22. Ogden, R.W., Saccomandi, G.: Introducing mesoscopic information into constitutive equations for arterial walls. Biomech. Model. Mechanobiol. 6, 333–344 (2007)

    Article  Google Scholar 

  23. Polignone, D.A., Horgan, C.O.: Cavitation for incompressible anisotropic nonlinearly elastic spheres. J. Elast. 33, 27–65 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Polignone, D.A., Horgan, C.O.: Effects of material anisotropy and inhomogeneity on cavitation for composite incompressible anisotropic nonlinearly elastic spheres. Int. J. Solids Struct. 30, 3381–3416 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Qiu, G.Y., Pence, T.J.: Remarks on the behavior of simple directionally reinforced incompressible nonlinearly elastic solids. J. Elast. 49, 1–30 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rivlin, R.S.: Large elastic deformations of isotropic materials VI. Further results in the theory of torsion, shear and flexure. Phil. Trans. R. Soc. Lond. A 242, 173–195 (1949). Reprinted in: Barenblatt, G.I., Joseph, D.D. (eds.) Collected Papers of R.S. Rivlin, vol. 1, pp. 120–142. Springer, New York (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Sadovsky, A.V., Baldi, P.F., Wan, F.Y.M.: A theoretical study of the in vivo mechanical properties of angiosperm roots: constitutive theories and methods of parameter estimation. J. Eng. Mater. Tech. 129, 483–487 (2007)

    Article  Google Scholar 

  28. Spencer, A.J.M.: Deformations of Fibre-Reinforced Materials. Oxford University Press, Oxford (1972)

    MATH  Google Scholar 

  29. Taber, L.A.: Nonlinear Theory of Elasticity: Applications in Biomechanics. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius O. Horgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horgan, C.O., Murphy, J.G. Torsion of Incompressible Fiber-Reinforced Nonlinearly Elastic Circular Cylinders. J Elast 103, 235–246 (2011). https://doi.org/10.1007/s10659-010-9282-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-010-9282-5

Keywords

Mathematics Subject Classification (2000)

Navigation