Skip to main content
Log in

Antiplane Shear Waves in Two Contacting Ferromagnetic Half Spaces

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The problem of reflection and refraction of antiplane shear (or magneto-elastic) waves at the interface between two ferromagnetic half-spaces with slipping contact (vacuum gap) is studied for waves propagating normal to the direction of the applied external magnetic field which is assumed to be parallel to the interface. We show the existence of new waves that are localized near the interface between the two ferromagnetic media and accompany the reflected and the transmitted waves. We call the new waves as accompanying surface magneto-elastic (ASME) waves; their amplitudes depend upon values of magnetoelastic parameters of the two media and the intensity of the applied magnetic field. We derive closed-form expressions for magnitudes (coefficients) of the reflected, the refracted (transmitted) and the ASME waves. We show that for a range of values of the applied magnetic field the coefficient of the reflected wave increases and that of the transmitted wave decreases with an increase in the magnitude of the applied magnetic field; these coefficients eventually approach 1 and 0, respectively. That is, the applied external magnetic field can totally eliminate the transmitted wave, and can control energies of the reflected, the refracted and the ASME waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, A.I., Baryakhtar, V.G., Peletminskiy, S.: The coupled magnetoelastic waves in ferromagnets and the ferroacustical resonance. J. Exp. Theor. Phys. 35, 228–240 (1958)

    Google Scholar 

  2. Camley, R.E., Maradudin, A.A.: Pure shear elastic surface wave guided by the interface between two semi-infinite magnetoelastic media. Appl. Phys. Lett. 38(8), 610–612 (1981)

    Article  ADS  Google Scholar 

  3. Damon, R.W., Eshbach, J.R.: Magnetoelastic modes of a ferromagnetic slab. J. Phys. Chem. Solids 19, 308–320 (1961)

    Article  ADS  Google Scholar 

  4. Danoyan, Z., Piliposian, G., Hasanyan, D.J.: Reflection of spin and spin-elastic waves at the interface of a ferromagnetic half-space. Waves Random Complex Media 19(4), 567–584 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  5. Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D, Appl. Phys. 38, R123–R152 (2005)

    Article  ADS  Google Scholar 

  6. Hasanyan, D.J., Marzocca, P., Harutyunyan, S.: Gap waves in ferro-magneto-elastic materials. In: CANSMART 2004, 7th Cansmart Meeting International Workshop on Smart Materials and Structures, Montreal, Quebec, Canada, October 21–22, 2004, pp. 201–209 (2004)

    Google Scholar 

  7. Hasanyan, D.J., Sahakyan, S.L.: Propagation of spin waves in a periodic layered space. Selected Papers from Symposium on Electro-Magneto-Mechanics, USNCTAM 14, pp. 67–76 (2003)

  8. Kittel, C.: Interaction of spin waves and ultrasonic waves in ferromagnetic crystals. Phys. Rev. B 110, 836–841 (1958)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Levchenko, V.V.: Propagation of magnetoelastic shear waves through a regularly laminated medium with metallized interfaces. Int. Appl. Mech. 40(1), 97–102 (2004)

    Article  ADS  Google Scholar 

  10. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. North Holland-Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  11. Maugin, G.A.: Wave motion in magnetizable deformable solids: review article. Int. J. Eng. Sci. 19, 321–388 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Maugin, G.A., Hakmi, A.: Magnetoelastic surface waves in elastic ferromagnets, I: orthogonal setting of the bias field. J. Acoust. Soc. Am. 77(3), 1010–1026 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Nowacki, J.P., Alshits, V.I., Lyubimov, V.N.: Magnetoelastic waves in a bicrystalline gap structure under a bias magnetic field. Int. J. Appl. Electromagn. Mech. 4, 223–232 (2000)

    Google Scholar 

  14. Roduner, E.: Nanoscopic Materials. Size-Dependent Phenomena. RSC Publishing (2006)

  15. Schmid, H.: In: Fiebig, M., et al. (ed.) Magnetoelectric Interaction Phenomena in Crystals. Kluwer, Dordrecht (2004)

    Google Scholar 

  16. Shul’ga, N.A., Levchenko, V.V., Ratushnyak, T.V.: Propagation of magnetoelastic shear waves across layers in a periodically layered medium. Int. Appl. Mech. 42(6), 655–660 (2006)

    Article  ADS  Google Scholar 

  17. Tiersten, H.F.: Thickness vibration of saturated magnetoelastic plates. J. Appl. Phys. 36(7), 2550–2559 (1965)

    Article  Google Scholar 

  18. Van de Vaart, V.: Magnetoelastic love-wave propagation in metal-coated layered substrates. J. Appl. Phys. 42(3), 5305–5312 (1971)

    Article  ADS  Google Scholar 

  19. Wadhawan, V.K.: Introduction to Ferroic Materials. Gordon and Breach Science, New York (2000)

    Google Scholar 

  20. Yang, J.S.: Acoustic gap waves in piezoelectromagnetic materials. Math. Mech. Solids 11, 451–458 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ericksen, J.L.: Magnetizable and polarizable elastic materials. Math. Mech. Solids 13, 38–54 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Hasanyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasanyan, D.J., Batra, R.C. Antiplane Shear Waves in Two Contacting Ferromagnetic Half Spaces. J Elast 103, 189–203 (2011). https://doi.org/10.1007/s10659-010-9280-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-010-9280-7

Keywords

Mathematics Subject Classification (2000)

Navigation