On the Justification of Plate Models

Abstract

In this paper, we will consider the modelling of problems in linear elasticity on thin plates by the models of Kirchhoff–Love and Reissner–Mindlin. A fundamental investigation for the Kirchhoff plate goes back to Morgenstern (Arch. Ration. Mech. Anal. 4:145–152, 1959) and is based on the two-energies principle of Prager and Synge. This was half a century ago.

We will derive the Kirchhoff–Love model based on Morgenstern’s ideas in a rigorous way (including the proper treatment of boundary conditions). Our derivation provides insights (a) into the relation of the (1,1,0)-model with the (1,1,2)-model which differs by a quadratic term in the ansatz for the third component of the displacement field and (b) into the rôle of the shear correction factor. A further advantage of the approach by the two-energies principle is that the extension to the Reissner–Mindlin plate model becomes very transparent and easy. Our study includes plates with reentrant corners with any interior opening angle <2π.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Alessandrini, A.L., Arnold, D.N., Falk, R.S., Madureira, A.L.: Derivation and justification of plate models by variational methods. In: Fortin, M. (ed.) Plates and Shells, Quebec 1996. CRM Proceeding and Lecture Notes, vol. 21, pp. 1–20. American Mathematical Society, Providence (1999)

    Google Scholar 

  2. 2.

    Arnold, D.N., Falk, R.S.: The boundary layer for the Reissner–Mindlin plate model. SIAM J. Math. Anal. 21, 281–312 (1990)

    MATH  Article  MathSciNet  Google Scholar 

  3. 3.

    Arnold, D.N., Madureira, A.L., Zhang, S.: On the range of applicability of the Reissner–Mindlin and Kirchhoff–Love plate bending models. J. Elast. 67, 171–185 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    Babuška, I., d’Harcourt, J.M., Schwab, Ch.: Optimal shear correction factors in hierarchical plate modelling. Math. Model. Sci. Comput. 1, 1–30 (1993)

    MATH  Google Scholar 

  5. 5.

    Babuška, I., Pitkäranta, J.: The plate paradox for hard and soft simple support. SIAM J. Math. Anal. 21, 551–576 (1990)

    MATH  Article  MathSciNet  Google Scholar 

  6. 6.

    Braess, D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  7. 7.

    Braess, D., Ming, P., Shi, Z.: An error estimate for a plane elasticity problem and the enhanced strain method. SIAM J. Numer. Anal. 47, 4473–4491 (2010)

    MATH  Article  MathSciNet  Google Scholar 

  8. 8.

    Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are p-robust. Comput. Methods Appl. Mech. Eng. 198, 1189–1197 (2009)

    MATH  Article  ADS  Google Scholar 

  9. 9.

    Ciarlet, P.G.: Mathematical Elasticity, Vol. II: Theory of Plates. North-Holland, Amsterdam (1997)

    Google Scholar 

  10. 10.

    Ciarlet, P.G., Destuynder, P.: A justification of the two-dimensional linear plate model. J. Méc. 18, 315–344 (1979)

    MATH  MathSciNet  Google Scholar 

  11. 11.

    Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)

    MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    Dolejsi, V., Feistauer, M., Schwab, Ch.: A finite volume discontinuous Galerkin scheme for nonlinear convection diffusion problems. Calcolo 39, 1–40 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  13. 13.

    Grisvard, P.: Singularities in Boundary Value Problems. Masson, Paris (1992)

    Google Scholar 

  14. 14.

    Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)

    MATH  Article  MathSciNet  Google Scholar 

  15. 15.

    Kirchhoff, G.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine angew. Math. 40, 51–58 (1850)

    MATH  Article  Google Scholar 

  16. 16.

    Melenk, M., Schwab, Ch.: hp-FEM for reaction-diffusion equations, robust exponential convergence. SIAM J. Numer. Anal. 35, 1520–1557 (1998)

    MATH  Article  MathSciNet  Google Scholar 

  17. 17.

    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover, New York (1927)

    Google Scholar 

  18. 18.

    Morgenstern, D.: Herleitung der Plattentheorie aus der dreidimensionalen Elastizitätstheorie. Arch. Ration. Mech. Anal. 4, 145–152 (1959)

    MATH  Article  MathSciNet  Google Scholar 

  19. 19.

    Prager, W., Synge, J.L.: Approximations in elasticity based on the concept of function spaces. Q. Appl. Math. 5, 241–269 (1947)

    MATH  MathSciNet  Google Scholar 

  20. 20.

    Reissner, E.: On bending of elastic plates. Q. Appl. Math. 5, 55–68 (1947)

    MATH  MathSciNet  Google Scholar 

  21. 21.

    Repin, S., Sauter, S.: Computable estimates of the modeling error related to the Kirchhoff–Love plate model. Preprint 11-2009, Institut für Mathematik, University of Zurich (to appear in Anal. Appl. 2010)

  22. 22.

    Rössle, A., Bischoff, M., Wendland, W., Ramm, E.: On the mathematical foundation of the (1,1,2)-plate model. Int. J. Solids Struct. 36, 2143–2168 (1999)

    MATH  Article  Google Scholar 

  23. 23.

    Schwab, Ch.: Hierarchical models of plates—Fourier analysis and a-posteriori error estimation. Habilitation Thesis, Stuttgart, Germany (1995)

  24. 24.

    Stein, E.: Private communication

  25. 25.

    Triebel, H.: Interpolation, Function Spaces and Differential Operators, 2nd edn. Joh. A. Barth Publ., Leipzig (1995)

    Google Scholar 

  26. 26.

    Zhang, S.: On the accuracy of Reissner–Mindlin plate model for stress boundary conditions. M2AN 40, 269–294 (2006)

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christoph Schwab.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Braess, D., Sauter, S. & Schwab, C. On the Justification of Plate Models. J Elast 103, 53–71 (2011). https://doi.org/10.1007/s10659-010-9271-8

Download citation

Keywords

  • Plate models
  • Justification
  • Hypercircle inequality
  • Prager–Synge
  • Shear correction factor
  • Reissner–Mindlin model

Mathematics Subject Classification (2000)

  • 74K20
  • 35Q74
  • 74B05