Skip to main content
Log in

Exact Electromagnetothermoelastic Solution for a Transversely Isotropic Piezoelectric Hollow Sphere Subjected to Arbitrary Thermal Shock

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This paper presents analytical study for electromagnetothermoelastic transient behavior of a transversely isotropic hollow sphere, placed in a uniform magnetic field, subjected to arbitrary thermal shock. Exact solutions for the transient responses of stresses, perturbation of magnetic field vector, electric displacement and electric potential in the transversely isotropic piezoelectric hollow sphere are obtained by means of the Hankel transform, the Laplace transform and their inverse transforms. An interpolation method is used to solve the Volterra integral equation of the second kind caused by interactions among electric, magnetic, thermal and elastic fields. From the sample numerical calculations, it is seen that the present method is suitable for the transversely isotropic hollow sphere, placed in a uniform magnetic field, subjected to arbitrary thermal shock. Finally, the result can be used as a reference to solve other transient coupling problems of electromagnetothermoelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\vec{U},u\) :

Displacement vector and radial displacement [m]

c ij (i=r,θ,j=r,θ,φ):

Elastic constants [kg/ms2]

e ri (i=r,θ):

Piezoelectric constants [As/m2]

β rr :

Dielectric constant [A2s4/kgm2]

p r :

Pyroelectric coefficient [A2s/Km2]

σ i (i=r,θ),D r :

Components of stresses [kg/ms2]

and radial electric displacement [As/m2]

T(r,t):

Temperature change [K]

α i (i=r,θ):

Thermal expansion coefficients [1/K]

φ(r,t):

Electric potential [kgm2/As3]

ρ :

Mass density [kg/m3]

t :

Time variable [s]

r,θ :

Radial variable and circumferential variable [m]

\(\vec{H}\) :

Magnetic intensity vector

\(\vec{h}\) :

Perturbation of magnetic field vector

\(\vec{J}\) :

Electric current density vector

\(\vec{e}\) :

Perturbation of electric field vector

μ :

Magnetic permeability [kgm/A2s2]

H u :

Magnetic intensity [A/m]

f u :

Lorentz’s force [kg/m2s2]

a,b :

Internal and external radii of piezoelectric hollow sphere [m]

C L :

Electromagnetothermoelastic wave speed [m/s]

ω :

The inherent frequency of the piezoelectric hollow sphere [1/s]

References

  1. Hu, H.C.: On the general theory of elasticity for a spherically isotropic medium. Acta Sci. Sin. 3, 247–260 (1954)

    Google Scholar 

  2. Sternberg, E., Chakravorty, J.G.: Thermal shock in an elastic body with a spherical cavity. Q. Appl. Math. 17, 205–218 (1959)

    MathSciNet  Google Scholar 

  3. Tsui, T., Kraus, H.: Thermal stress wave propagation in hollow elastic spheres. J. Acoust. Soc. Am. 37, 730–737 (1965)

    Article  ADS  Google Scholar 

  4. Hata, T.: Thermal shock in a hollow sphere caused by rapid uniform heating. J. Appl. Mech. 58, 64–69 (1991)

    Article  MATH  ADS  Google Scholar 

  5. Abd-All, A.M., Abd-alla, A.N., Zeidan, N.A.: Transient thermal stresses in a spherically orthotropic elastic medium with spherical cavity. Appl. Math. Comput. 105, 231–252 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Sherief, H.H., Ezzat, M.A.: Thermal shock problem in magnetothermoelaticity with thermal relaxation. Int. J. Solids Struct. 33, 4449–4459 (1996)

    Article  MATH  Google Scholar 

  7. Ding, H.J., Wang, H.M., Chen, W.Q.: Dynamic response of a pyroelectric hollow sphere under radial deformation. Eur. J. Mech. A/Solids 22, 617–631 (2003)

    Article  MATH  ADS  Google Scholar 

  8. Ding, H.J., Wang, H.M., Chen, W.Q.: Dynamic response of a functionally graded pyroelectric hollow sphere for spherically symmetric problems. Int. J. Mech. Sci. 45, 1029–1051 (2003)

    Article  MATH  Google Scholar 

  9. Dai, H.L., Wang, X.: Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation. Struct. Eng. Mech. 4, 441–457 (2005)

    Google Scholar 

  10. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Body. Mir, Moscow (1981)

    MATH  Google Scholar 

  11. Cinelli, G.: An extension of the finite Hankel transform and application. Int. J. Eng. Sci. 3, 539–559 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sinha, D.K.: Note on the radial deformation of a piezoelectric, polarized spherical shell with a symmetrical temperature distribution. J. Acoust. Soc. Am. 34, 1073–1075 (1962)

    Article  ADS  Google Scholar 

  13. John, K.D.: Electromagnetics. McGraw-Hill, New York (1984)

    Google Scholar 

  14. Dai, H.L., Wang, X.: Dynamic responses of piezoelectric hollow cylinders in an axial magnetic field. Int. J. Solids Struct. 41, 5231–5246 (2004)

    Article  MATH  Google Scholar 

  15. Hayt, W.H., Buck, J.A.: Engineering Electromagnetics, 6th edn. McGraw-Hill, New York (2002)

    Google Scholar 

  16. Dunn, M.L., Taya, M.: Electroelastic field concentrations in and around inhomogeneties in piezoelectric solids. J. Appl. Mech. 61, 474–475 (1994)

    Article  ADS  Google Scholar 

  17. Kress, R.: Linear Integral Equation. Applied Mathematical Sciences, vol. 82. Springer, Berlin (1989)

    Book  Google Scholar 

  18. Ding, H.J., Wang, H.M., Hou, P.F.: The transient response of piezoelectric hollow cylinders for axisymmetric plane strain problems. Int. J. Solids Struct. 40, 105–123 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Liang Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, HL., Zheng, HY. & Yang, L. Exact Electromagnetothermoelastic Solution for a Transversely Isotropic Piezoelectric Hollow Sphere Subjected to Arbitrary Thermal Shock. J Elast 102, 79–97 (2011). https://doi.org/10.1007/s10659-010-9263-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-010-9263-8

Keywords

Mathematics Subject Classification (2000)

Navigation