Skip to main content
Log in

Elastic Symmetries of Defective Crystals

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

I construct discrete and continuous crystal structures that are compatible with a given choice of dislocation density tensor, and (following Mal’cev) provide a canonical form for these discrete structures. The symmetries of the discrete structures extend uniquely to symmetries of corresponding continuous structures—I calculate these symmetries explicitly for a particular choice of dislocation density tensor and deduce corresponding constraints on energy functions which model defective crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mal’cev, A.: On a class of homogeneous spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 13, 9–32 (1949) Am. Math. Soc. Translation 39 (1949)

    MathSciNet  Google Scholar 

  2. Cermelli, P., Parry, G.P.: The structure of uniform discrete defective crystals. Contin. Mech. Thermodyn. 18, 47–61 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Elzanowski, M., Parry, G.P.: Material symmetry in a theory of continuously defective crystals. J. Elast. 74, 215–237 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Parry, G.P.: Group properties of defective crystal structures. Math. Mech. Solids 8, 515–537 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Parry, G.P.: Rotational symmetries of crystals with defects. J. Elast. 94, 147–166 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Davini, C.: A proposal for a continuum theory of defective crystals. Arch. Ration. Mech. Anal. 96, 295–317 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Davini, C., Parry, G.P.: On defect preserving deformations in crystals. Int. J. Plast. 5, 337–369 (1989)

    Article  MATH  Google Scholar 

  8. Davini, C., Parry, G.P.: A complete list of invariants for defective crystals. Proc. R. Soc. Lond. A 432, 341–365 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Parry, G.P.: Symmetries of continuously defective crystals. In: S̆ilhavý, M. (ed.) Mathematical Modelling of Bodies with Complicated Bulk and Boundary Behaviour, Quaderni di Mathematica, vol. 20, pp. 135–158. Dipartimento di Matematica della Seconda Università di Napoli (2007)

  10. Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B.: Foundations of Lie Theory and Lie Transformation Groups. Springer, Berlin (1997)

    MATH  Google Scholar 

  11. Hall, P.: A contribution to the theory of groups of prime power order. Proc. Lond. Math. Soc., Ser. 2 36, 29–95 (1933)

    Article  MATH  Google Scholar 

  12. Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory. Dover, New York (1976)

    MATH  Google Scholar 

  13. Varadarajan, V.S.: Lie Groups, Lie Algebras, and Their Representations. Prentice-Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  14. Johnson, D.L.: Presentations of Groups, 2nd edn. London Mathematical Society Student Texts, vol. 15, Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Parry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parry, G.P. Elastic Symmetries of Defective Crystals. J Elast 101, 101–120 (2010). https://doi.org/10.1007/s10659-010-9254-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-010-9254-9

Keywords

Mathematics Subject Classification (2000)

Navigation