Journal of Elasticity

, Volume 94, Issue 2, pp 147–166 | Cite as

Rotational Symmetries of Crystals with Defects

Article

Abstract

I use the theory of Lie groups/algebras to discuss the symmetries of crystals with uniform distributions of defects.

Keywords

Crystals Defects Lie groups 

Mathematics Subject Classification (2000)

74A20 74E25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davini, C.: A proposal for a continuum theory of defective crystals. Arch. Ration. Mech. Anal. 96, 295–317 (1986) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Pontryagin, L.S.: Topological Groups, 2nd edn. Gordon and Breach, New York (1955) Google Scholar
  3. 3.
    Olver, P.J.: Equivalence, Invariants, and Symmetry. Cambridge University Press, Cambridge (1996) Google Scholar
  4. 4.
    Varadarajan, V.S.: Lie Groups, Lie Algebras, and Their Representations. Prentice-Hall, Englewood Cliffs (1974) MATHGoogle Scholar
  5. 5.
    Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Springer, New York (1983) MATHGoogle Scholar
  6. 6.
    Belinfante, J.G.F.: Lie algebras and inhomogeneous simple materials. SIAM J. Appl. Math. 25, 260–268 (1973) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bilby, B.A.: Geometry and continuum mechanics, Reprint Google Scholar
  8. 8.
    Parry, G.P.: Group properties of defective crystal structures. Math. Mech. Solids 8, 515–538 (2003) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cermelli, P., Parry, G.P.: The structure of uniform discrete defective crystals. Contin. Mech. Thermodyn. 18(1–2), 47–61 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Elzanowksi, M., Parry, G.P.: Material symmetry in a theory of continuously defective crystals. J. Elast. 74(3), 215–237 (2004) CrossRefGoogle Scholar
  11. 11.
    Caratheodory, C.: Calculus of Variations and Partial Differential Equations of the First Order, Part I. Holden-Day, San Francisco (1965) MATHGoogle Scholar
  12. 12.
    Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory. Dover, New York (1976) MATHGoogle Scholar
  13. 13.
    Pitteri, M., Zanzotto, G.: Continuum Models for Phase Transitions and Twinning in Crystals. Chapman and Hall/CRC, Boca Raton (2003) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations