Skip to main content
Log in

Plane Waves and Eigenfrequencies in the Linear Theory of Binary Mixtures of Thermoelastic Solids

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper some basic properties of wave numbers of the longitudinal and transverse plane waves are treated. The existence theorems of eigenfrequencies of the interior homogeneous boundary-value problems of steady oscillations of binary mixtures for thermoelastic solids are proved. The connection between plane waves and eigenfrequencies is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green, A.E., Naghdi, P.M.: A dynamical theory of interacting continua. Int. J. Engng. Sci. 3, 231–241 (1965)

    Article  MathSciNet  Google Scholar 

  2. Green, A.E., Steel, T.R.: Constitutive equations for interacting continua. Int. J. Engng. Sci. 4, 483–500 (1966)

    Article  Google Scholar 

  3. Steel, T.R.: Applications of a theory of interacting continua. Quart. J. Mech. Appl. Math. 20, 57–72 (1967)

    Article  MATH  Google Scholar 

  4. Atkin, R.J., Chadwick, P., Steel, T.R.: Uniqueness theorems for linearized theories of interacting continua. Mathematika 14, 27–42 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. Svanadze, M.Zh.: The fundamental solution of the oscillation equations of the thermoelasticity theory of mixture of two elastic solids. J. Thermal Stresses 19, 633–648 (1996)

    Article  MathSciNet  Google Scholar 

  6. Natroshvili, D.G., Jagmaidze, A.J., Svanadze, M.Zh.: Some Problems of the Linear Theory of Elastic Mixtures. Tbilisi University edition, Tbilisi (1986)

    Google Scholar 

  7. Natroshvili, D.G., Svanadze, M.Zh.: Potential methods in the problems of linear theory of elastic mixtures. In: Kuhnert, F., Silbermann, B. (eds.) Problems and Methods in Mathematical Physics, Teubner-Texte zur Mathematik, Band, vol. 111, pp. 199-206. Teubner, Leipzig (1989)

    Google Scholar 

  8. Burchuladze, T., Svanadze, M.: Potential method in the linear theory of binary mixtures of thermoelastic solids. J. Thermal Stresses 23, 601–626 (2000)

    Article  MathSciNet  Google Scholar 

  9. Iesan, D.: On the theory of mixtures of thermoelastic solids. J. Thermal Stresses 14, 389–408 (1991)

    Article  MathSciNet  Google Scholar 

  10. Martinez, F., Quintanilla, R.: Some qualitative results for the linear theory of binary mixtures of thermoelastic solids. Collect. Math. 46, 263–277 (1995)

    MATH  MathSciNet  Google Scholar 

  11. Trusdell, C., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/3, Springer-Verlag, Berlin (1960)

    Google Scholar 

  12. Green, A.E., Naghdi, P.M.: A note on mixtures. Int. J. Engng. Sci. 6, 631–635 (1968)

    Article  Google Scholar 

  13. Green, A.E., Naghdi, P.M.: On basic equations for mixtures. Quart. J. Mech. Appl. Math. 22, 427–437 (1969)

    Article  MATH  Google Scholar 

  14. Iesan, D.: A theory of mixtures with different constituent temperatures. J. Thermal Stresses 20, 147–167 (1997)

    Article  MathSciNet  Google Scholar 

  15. Khoroshun, L.P., Soltanov, N.S.: Thermoelasticity of Two Component Mixtures. Naukova Dumka, Kiev (1984)

    MATH  Google Scholar 

  16. Bowen, R.M.: Theory of Mixtures. In: Eringen, A.E. (ed.) Continuum Physics, vol. 3, Academic Press, New York (1976)

    Google Scholar 

  17. Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: basic theory and historical development. Quart. J. Mech. Appl. Math. 29, 209–245 (1976)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Bedford, A., Drumheller, D.S.: Theory of immiscible structured mixtures. Int. J. Engng. Sci. 21, 863–960 (1981)

    Article  MathSciNet  Google Scholar 

  19. Rajagopal, K.R., Tao, L.: Mechanics of mixtures. Ser. Adv. Math. Appl. Sci. vol. 35, World Sci. Publ., Teaneck, NJ (1995)

    Google Scholar 

  20. Rushchitskii, Ya.Ya.: Elements of Mixture Theory. Naukova Dumka, Kiev (1991)

    Google Scholar 

  21. Svanadze, M.Zh.: On existence of eigenfrequencies in the theory of two- component elastic mixtures. Quart. J. Mech. Appl. Math. 51, 427–436 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rajagopal, K.R., Wineman, A.S., Gandhi, M.: On boundary conditions for a certain class of problems in mixture theory. Int. J. Engng. Sci. 24, 1453–1463 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam, New York, Oxford (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merab Svanadze.

Additional information

This paper dedicated to my teacher Professor Mikheil Basheleishvili on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svanadze, M. Plane Waves and Eigenfrequencies in the Linear Theory of Binary Mixtures of Thermoelastic Solids. J Elasticity 92, 195–207 (2008). https://doi.org/10.1007/s10659-008-9157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-008-9157-1

Keywords

Mathematics Subject Classifications (2000)

Navigation