Skip to main content

The Variational Approach to Fracture

This is a preview of subscription content, access via your institution.

References

  1. Abdelmoula, R., Marigo, J.-J.: The effective behavior of a fiber bridged crack. J. Mech. Phys. Solids 48(11), 2419–2444 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86(2), 125–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adams, A., Fournier, J.: Sobolev Spaces. In: Pure and Applied Mathematics, 2nd edn. Elsevier, Oxford (2003)

    Google Scholar 

  4. Alberti, G.: Variational models for phase transitions, an approach via Γ-Convergence. In: Buttazzo, G. (ed.) Calculus of Variations and Partial Differential Equations, pp. 95–114. Springer, Berlin (2000)

    Google Scholar 

  5. Ambrosio, L.: Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111, 291–322 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L.: On the lower semicontinuity of quasiconvex integrals in \({\rm SBV}(\Omega,{\bf R}^k)\). Nonlinear Anal.-Theor. 23(3), 405–425 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  8. Ambrosio, L., Tortorelli, V.: Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ambrosio, L., Tortorelli, V.: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7) 6(1), 105–123 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Ball, J.M., Murat, F.: W 1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58(3), 225–253 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    MathSciNet  Article  Google Scholar 

  12. Bellettini, G., Coscia, A.: Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optim. 15(3,4), 201–224 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bilteryst, F., Marigo, J.-J.: An energy based analysis of the pull-out problem. Eur. J. Mech. A- Solids 22, 55–69 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bonnet, A., David, G.: Cracktip is a global Mumford–Shah minimizer. Astérisque (274), vi+259 (2001)

  15. Bouchitté, G., Braides, A., Buttazzo, G.: Relaxation results for some free discontinuity problems. J. Reine Angew. Math. 458, 1–18 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Bouchitté, G., Fonseca, I., Leoni, G., Mascarenhas, L.: A global method for relaxation in W 1,p and in SBVp. Arch. Ration. Mech. Anal. 165(3), 187–242 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bourdin, B.: Une méthode variationnelle en mécanique de la rupture. Théorie et applications numériques. Thèse de doctorat, Université Paris-Nord (1998)

  18. Bourdin, B.: Image segmentation with a finite element method. ESAIM Math. Model. Numer. Anal. 33(2), 229–244 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bourdin, B.: Numerical implementation of a variational formulation of quasi-static brittle fracture. Interfaces Free Bound. 9 411–430 (2007a)

    MathSciNet  MATH  Article  Google Scholar 

  20. Bourdin, B.: The variational formulation of brittle fracture: numerical implementation and extensions. In: Combescure, A., Belytschko, T., de Borst, R. (eds.) IUTAM Symposium on Discretization Methods for Evolving Discontinuities, pp. 381–394. Springer (2007b)

  21. Bourdin, B., Chambolle, A.: Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85(4), 609–646 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bourdin, B., Francfort, G.A., Marigo, J.-J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Braides, A.: Γ-convergence for beginners. In: Oxford Lecture Series in Mathematics and Its Applications, vol. 22. Oxford University Press, New York (2002)

    Google Scholar 

  24. Braides, A., Dal Maso, G., Garroni, A.: Variational formulation of softening phenomena in fracture mechanics: the one dimensional case. Arch. Ration. Mech. Anal. 146, 23–58 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bucur, D., Varchon, N.: Boundary variation for a Neumann problem. Ann. Scuola Norm.-Sci. 29(4), 807–821 (2000)

    MathSciNet  Google Scholar 

  26. Bui, H.D.: Mécanique de la Rupture Fragile. Masson, Paris (1978)

    Google Scholar 

  27. Chaboche, J.-L., Feyel, F., Monerie, Y.: Interface debonding models: a viscous regularization with a limited rate dependency. Int. J. Solids Struct. 38(18), 3127–3160 (2001)

    Article  MATH  Google Scholar 

  28. Chambolle, A.: A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167(3), 211–233 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chambolle, A.: An approximation result for special functions with bounded variations. J. Math. Pure Appl. 83, 929–954 (2004)

    MathSciNet  Google Scholar 

  30. Chambolle, A.: Addendum to An approximation result for special functions with bounded deformation [J. Math. Pures Appl. (9) 83 (7) (2004) 929–954]: the N-dimensional case. J. Math. Pure Appl. 84, 137–145 (2005)

    MathSciNet  Google Scholar 

  31. Chambolle, A., Doveri, F.: Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets. Commun. Part. Diff. Equ. 22(5,6), 811–840 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chambolle, A., Giacomini, A., Ponsiglione, M.: Crack initiation in brittle materials. Arch. Rational Mech. Anal. (2007). doi:10.1007/s00205-007-0080-6

  33. Charlotte, M., Francfort, G.A., Marigo, J.-J., Truskinovky, L.: Revisiting brittle fracture as an energy minimization problem: comparison of Griffith and Barenblatt surface energy models. In: Benallal, A. (ed.) Continuous Damage and Fracture, pp. 7–12. Elsevier, Paris (2000)

    Google Scholar 

  34. Charlotte, M., Laverne, J., Marigo, J.-J.: Initiation of cracks with cohesive force models: a variational approach. Eur. J. Mech. A-Solids 25(4), 649–669 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Ciarlet, P.G.: Élasticité tridimensionnelle, vol. 1 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris (1986)

    Google Scholar 

  36. Ciarlet, P.G., Nečas, J.: Injectivity and self-contact in nonlinear elasticity. Arch. Ration. Mech. Anal. 97(3), 171–188 (1987)

    Article  Google Scholar 

  37. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin Heidelberg New York (1989)

    MATH  Google Scholar 

  38. Dal Maso, G.: An Introduction to Γ-convergence. Birkhäuser, Boston (1993)

    Google Scholar 

  39. Dal Maso, G., De Simone, A., Mora, M.G., Morini, M.: A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Technical report, SISSA (2006)

  40. Dal Maso, G., Francfort, G.A., Toader, R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176(2), 165–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162, 101–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dal Maso, G., Zanini, C.: Quasistatic crack growth for a cohesive zone model with prescribed crack path. Proc. Roy. Soc. Edin. A 137(2), 253–279 (2007)

    Article  MATH  Google Scholar 

  43. De Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108, 195–218 (1989)

    Article  MATH  Google Scholar 

  44. Del Piero, G.: One dimensional ductile-brittle transition, yielding, and structured deformations. In: Argoul, P., Frémond, M. (eds.) Proceedings of the IUTAM Symposium Variations de domaines et frontières libres en mécanique, pp. 197–202. Kluwer, Boston (1997)

    Google Scholar 

  45. Destuynder, P., Djaoua, M.: Sur une interprétation mathématique de l’intégrale de Rice en théorie de la rupture fragile. Math. Meth. Appl. Sc. 3, 70–87 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  46. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–108 (1960)

    Article  ADS  Google Scholar 

  47. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC, Boca Raton, FL (1992)

    MATH  Google Scholar 

  48. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  49. Ferriero, A.: Quasi-static evolution for fatigue debonding. ESAIM Control Optim. Calc. Var. (2007) (to appear)

  50. Fonseca, I., Fusco, N.: Regularity results for anisotropic image segmentation models. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(3), 463–499 (1997)

    MathSciNet  Google Scholar 

  51. Francfort, G.A., Garroni, A.: A variational view of partial brittle damage evolution. Arch. Ration. Mech. Anal. 182(1), 125–152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Francfort, G.A., Larsen, C.: Existence and convergence for quasi-static evolution in brittle fracture. Commun. Pure Appl. Math. 56(10), 1465–1500 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Francfort, G.A., Le, N., Serfaty, S.: Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case (to appear)

  54. Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Francfort, G.A., Mielke, A.: Existence results for a class of rate-independent material models with nonconvex elastic energies. Reine Angew. J. Math. 595, 55–91 (2006)

    MathSciNet  MATH  Google Scholar 

  56. Garrett, K.W., Bailey, J.E.: Multiple transverse fracture in 90° cross-ply laminates of a glass fiber-reinforced polyester. J. Mater. Sci. 12, 157–168 (1977)

    Article  ADS  Google Scholar 

  57. Giacomini, A.: Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. Calc. Var. Partial Dif. 22(2), 129–172 (2005a)

    MathSciNet  MATH  Google Scholar 

  58. Giacomini, A.: Size effects on quasi-static growth of cracks. SIAM J. Math. Anal. 36(6), 1887–1928 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  59. Giacomini, A., Ponsiglione, M.: A discontinuous finite element approximation of quasi-static growth of brittle fractures. Numer. Funct. Anal. Optim. 24(7,8), 813–850 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  60. Giacomini, A., Ponsiglione, M.: Discontinuous finite element approximation of quasistatic crack growth in nonlinear elasticity. Math. Mod. Meth. Appl. S. 16(1), 77–118 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Griffith, A.: The phenomena of rupture and flow in solids. Philos. T. Roy. Soc. A CCXXI-A, 163–198 (1920)

    Google Scholar 

  62. Gurtin, M.: Configurational forces as basic concepts of continuum physics. In: Applied Mathematical Sciences, vol. 137. Springer, New York (2000)

    Google Scholar 

  63. Hahn, H.: Über Annäherung an Lebesgue’sche Integrale durch Riemann’sche Summen. Sitzungsber. Math. Phys. Kl. K. Akad. Wiss. Wien 123, 713–743 (1914)

    Google Scholar 

  64. Halphen, B., Nguyen, Q.S.: Sur les matériaux standards généralisés. J. Mécanique 14(1), 39–63 (1975)

    MATH  Google Scholar 

  65. Hashin, Z.: Finite thermoelastic fracture criterion with application to laminate cracking analysis. J. Mech. Phys. Solids 44(7), 1129–1145 (1996)

    Article  ADS  Google Scholar 

  66. Hull, D.: An Introduction to Composite Materials. Cambridge Solid State Science Series. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  67. Irwin, G.: Fracture. In: Handbuch der Physik, herausgegeben von S. Flügge. Bd. 6. Elastizität und Plastizität, pp. 551–590. Springer, Berlin (1958)

    Google Scholar 

  68. Jaubert, A.: Approche variationnelle de la fatigue. Thèse de doctorat, Université Pierre et Marie Curie, Paris (2006)

  69. Jaubert, A., Marigo, J.-J.: Justification of Paris-type fatigue laws from cohesive forces model via a variational approach. Contin. Mech. Thermodyn. 18(1,2), 23–45 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Kohn, R., Sternberg, P.: Local minimizers and singular perturbations. Proc. Roy. Soc. Edin. A 111(A), 69–84 (1989)

    MathSciNet  MATH  Google Scholar 

  71. Landau, L.D., Lifschitz, E.M.: Lehrbuch der theoretischen Physik (Landau-Lifschitz). Band VII. Berlin: Akademie-Verlag, seventh edition. Elastizitätstheorie. [Elasticity theory], Translated from the Russian by Benjamin Kozik and Wolfgang Göhler, Translation edited by Hans-Georg Schöpf, With a foreword by Schöpf, and P. Ziesche (1991)

  72. Lawn, B.: Fracture of Brittle Solids, 2nd edn. Cambridge Solid State Science Series. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  73. Leblond, J.-B.: Mécanique de la rupture fragile et ductile, Collection Études en mécanique des matériaux et des structures. Editions Lavoisier, Paris (2000)

    Google Scholar 

  74. Leguillon, D.: Calcul du taux de restitution de l’énergie au voisinage d’une singularité’. C. R. Acad. Sci. II b 309, 945–950 (1990)

    Google Scholar 

  75. Lemaître, J., Chaboche, J.-L.: Mécanique des Matériaux Solides. Dunod, Paris (1985)

    Google Scholar 

  76. Leonetti, F., Siepe, F.: Maximum principle for vector valued minimizers. J. Convex Anal. 12(2), 267–278 (2005)

    MathSciNet  MATH  Google Scholar 

  77. Lorentz, E., Andrieux, S.: A variational formulation for nonlocal damage models. Int. J. Plast. 15, 119–138 (1999)

    Article  MATH  Google Scholar 

  78. Marigo, J.-J., Truskinovsky, L.: Initiation and propagation of fracture in the models of Griffith and Barenblatt. Continuum Mech. Therm. 16(4), 391–409 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Mielke, A.: Evolution of rate-independent systems. In: Evolutionary equations. Handb. Differ. Equ., vol. II, pp. 461–559. Elsevier/North-Holland, Amsterdam (2005)

    Google Scholar 

  80. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. XLII, 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  81. Murat, F.: The Neumann sieve. In: Nonlinear variational problems (Isola d’Elba, 1983). Res. Notes in Math, vol. 127, pp. 24–32. Pitman, Boston, MA (1985)

    Google Scholar 

  82. Needleman, A.: Micromechanical modelling of interface decohesion. Ultramicroscopy 40, 203–214 (1992)

    Article  MathSciNet  Google Scholar 

  83. Negri, M.: The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional. Numer. Funct. Anal. Optim. 20(9,10), 957–982 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  84. Negri, M.: A finite element approximation of the Griffith model in fracture mechanics. Numer. Math. 95, 653–687 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  85. Negri, M., Paolini, M.: Numerical minimization of the Mumford-Shah functional. Calcolo 38(2), 67–84 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  86. Nguyen, O., Repetto, E.A., Ortiz, M., Radovitzki, R.A.: A cohesive model of fatigue crack growth. Int. J. Frac. Mech. 110, 351–369 (2001)

    Article  Google Scholar 

  87. Nguyen, Q.S.: Stability and Nonlinear Solid Mechanics. Wiley, London (2000)

    Google Scholar 

  88. Paris, P.C., Gomez, M.P., Anderson, W.E.: A rational analytic theory of fatigue. Trend Eng. 13(8), 9–14 (1961)

    Google Scholar 

  89. Roe, K.L., Siegmund, T.: An irreversible cohesive zone model for interface fatigue crack growth simulation. Int. J. Frac. Mech. 70, 209–232 (2002)

    Article  Google Scholar 

  90. Rogers, C.A.: Hausdorff Measures. Cambridge University Press, London (1970)

    MATH  Google Scholar 

  91. Rudin, W.: Functional Analysis. Mc Graw Hill, New York (1973)

    MATH  Google Scholar 

  92. Suquet, P.: Plasticité et homogénéisation. Doctorat d’État, Université Pierre et Marie Curie (1982)

  93. Toader, R., and Zanini, C.: An artificial viscosity approach to quasistatic crack growth. Technical report, S.I.S.S.A. http://cvgmt.sns.it/papers/ (2005)

  94. Tvergaard, V.: Effect of fiber debonding in a whisker-reinforced metal. Mat. Sci. Eng. A-Struc. 125, 203–213 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles A. Francfort.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bourdin, B., Francfort, G.A. & Marigo, JJ. The Variational Approach to Fracture. J Elasticity 91, 5–148 (2008). https://doi.org/10.1007/s10659-007-9107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-007-9107-3

Keywords

  • Fracture
  • Griffith
  • Cohesive energies
  • Variational formulation
  • Functions of bounded variations
  • Relaxation
  • Evolution
  • Quasi-static
  • Local minimizers
  • Global minimizers

Mathematics Subject Classifications (2000)

  • 74R10
  • 49J40
  • 26A45
  • 47J30