Skip to main content
Log in

Limiting Chain Extensibility Constitutive Models of Valanis–Landel Type

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A new general constitutive model in terms of the principal stretches is proposed to reflect limiting chain extensibility resulting in severe strain-stiffening for incompressible, isotropic, homogeneous elastic materials. The strain-energy density involves the logarithm function and has the general Valanis–Landel form. For specific functions in the Valanis–Landel representation, we obtain particular strain-energies, some of which have been proposed in the recent literature. The stress–stretch response in some basic homogeneous deformations is described for these particular strain-energy densities. It is shown that the stress response in these deformations is similar to that predicted by the Gent model involving the first invariant of the Cauchy–Green tensor. The models discussed here depend on both the first and second invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    MathSciNet  Google Scholar 

  2. Horgan, C.O., Saccomandi, G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. J. Elast. 56, 159–170 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Horgan, C.O., Saccomandi, G.: Pure axial shear of isotropic incompressible nonlinearly elastic materials with limiting chain extensibility. J. Elast. 57, 307–319 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Horgan, C.O., Saccomandi, G.: Pure azimuthal shear of isotropic incompressible hyperelastic materials with limiting chain extensibility. Int. J. Nonlinear Mech. 36, 465–475 (2001)

    Article  MATH  Google Scholar 

  5. Horgan, C.O., Saccomandi, G.: Large deformations of a rotating solid cylinder for non-Gaussian isotropic, incompressible, hyperelastic materials. J. Appl. Mech. 68, 115–117 (2001)

    Article  MATH  Google Scholar 

  6. Horgan, C.O., Saccomandi, G.: Antiplane shear deformations for non-Gaussian isotropic, incompressible, hyperelastic materials. Proc. R. Soc. Lond., A 457, 1999–2017 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Horgan, C.O., Saccomandi, G.: Constitutive modeling of rubber-like and biological materials with limiting chain extensibility. Math. Mech. Solids 7, 353–371 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Horgan, C.O., Saccomandi, G.: A molecular-statistical basis for the Gent constitutive model of rubber elasticity. J. Elast. 68, 167–176 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Horgan, C.O., Saccomandi, G.: A description of arterial wall mechanics using limiting chain extensibility constitutive models. Biomech. Model. Mechanobiol. 1, 251–266 (2003)

    Article  Google Scholar 

  10. Horgan, C.O., Saccomandi, G.: Finite thermoelasticity with limiting chain extensibility. J. Mech. Phys. Solids 51, 1127–1146 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Horgan, C.O., Saccomandi, G.: Constitutive models for atactic elastomers. In: Monaco, R., Rionero, S., Ruggeri, T. (eds.) Proceedings of the Symposium on “Waves and Stability in Continuous Media”, (WASCOM 2003), Sardinia, Italy, pp. 281–293. World Scientific, Singapore (2004)

    Google Scholar 

  12. Horgan, C.O., Saccomandi, G.: Hyperelastic limiting chain extensibility constitutive models for rubber: a brief review. In: Austrell, P.-E., Kari, L. (eds.) Constitutive Models for Rubber IV, Proceedings of the 4th European Conference on “Constitutive Models for Rubber”, (ECCMR 2005), Stockholm, Sweden, pp. 607–617. Taylor and Francis, London (2005)

    Google Scholar 

  13. Horgan, C.O., Saccomandi, G.: Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem. Technol. 79, 152–169 (2006)

    Google Scholar 

  14. Horgan, C.O., Schwartz, J.G.: Constitutive modeling and the trousers test for fracture of rubber-like materials. J. Mech. Phys. Solids 53, 545–564 (2005)

    Article  MATH  ADS  Google Scholar 

  15. Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000)

    Google Scholar 

  16. Carroll, M.M.: Elastic polymers with limiting chain extensibility. Preprint (2001)

  17. Dickie, R.A., Smith, T.L.: Viscoelastic properties of a rubber vulcanizate under large deformations in equal biaxial tension, pure shear and simple tension. Trans. Soc. Rheol. 15, 91–110 (1971)

    Article  Google Scholar 

  18. Gent, A.N.: Extensibility of rubber under different types of deformation. J. Rheol. 49, 271–275 (2005)

    Article  ADS  Google Scholar 

  19. Murphy, J.G.: Some remarks on kinematic modelling of limiting chain extensibility. Math. Mech. Solids (in press)

  20. Valanis, K.C., Landel, R.F.: The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 38, 2997–3002 (1967)

    Article  ADS  Google Scholar 

  21. Ogden, R.W.: Nonlinear elastic deformations. Ellis Horwood, Chichester (1984). Reprinted by Dover, New York (1997)

  22. Rivlin, R.S.: The Valanis–Landel strain-energy function. J. Elast. 73, 291–297 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rivlin, R.S.: The relation between the Valanis–Landel and classical strain-energy functions. Int. J. Non-linear Mech. 41, 141–145 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Hill, J.M.: Exact integrals and solutions for finite deformations of the incompressible Varga elastic materials. In: Fu, Y.B., Ogden, R.W. (eds.) Nonlinear Elasticity: Theory and Applications, pp. 160–200. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  25. Chou-Wang, M.S., Horgan, C.O.: Void nucleation and growth for a class of incompressible nonlinearly elastic materials. Int. J. Solids Struct. 25, 1239–1254 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zee, L., Sternberg, E.: Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids. Arch. Ration Mech. Anal. 83, 53–90 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius O. Horgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horgan, C.O., Murphy, J.G. Limiting Chain Extensibility Constitutive Models of Valanis–Landel Type. J Elasticity 86, 101–111 (2007). https://doi.org/10.1007/s10659-006-9085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-006-9085-x

Key words

Mathematics Subject Classifications (2000)

Navigation