Skip to main content
Log in

On the Size of RVE in Finite Elasticity of Random Composites

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This paper presents a quantitative study of the size of representative volume element (RVE) of random matrix-inclusion composites based on a scale-dependent homogenization method. In particular, mesoscale bounds defined under essential or natural boundary conditions are computed for several nonlinear elastic, planar composites, in which the matrix and inclusions differ not only in their material parameters but also in their strain energy function representations. Various combinations of matrix and inclusion phases described by either neo-Hookean or Ogden function are examined, and these are compared to those of linear elastic types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huet, C.: Application of variational concepts to size effects in elastic heterogeneous bodies. J. Mech. Phys. Solids 38, 813–841 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  2. Sab, K.: On the homogenization and simulation of random materials. Eur. J. Mech. A, Solids 11, 585–607 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Hazanov, S., Huet, C.: Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume. J. Mech. Phys. Solids 42, 1995–2011 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Drugan, W.J., Willis, J.R.: A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44, 497–524 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Gusev, A.A.: Representative volume element size for elastic composites: a numerical study. J. Mech. Phys. Solids 45, 1449–1459 (1997)

    Article  ADS  MATH  Google Scholar 

  6. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157, 69–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hazanov, S.: On apparent properties of nonlinear heterogeneous bodies smaller than the representative volume. Acta Mech. 134, 123–134 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Michel, J.C., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172, 109–143 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Drugan, W.J.: Micromechanics-based variational estimates for a higher-order nonlocal constitutive equation and optimal choice of effective moduli for elastic composites. J. Mech. Phys. Solids 48, 1359–1387 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Zohdi, T.I., Wriggers, P.: On the sensitivity of homogenized material responses at infinitesimal and finite strains. Commun. Numer. Methods Eng. 16, 657–670 (2000)

    Article  MATH  Google Scholar 

  11. Zohdi, T.I., Wriggers, P.: Aspects of the computational testing of the mechanical properties of microheterogeneous material samples. Int. J. Numer. Methods Eng. 50, 2573–2599 (2001)

    Article  MATH  Google Scholar 

  12. Segurado, J., Llorka, J.: A numerical approximation to the elastic properties of sphere-reinforced composites. J. Mech. Phys. Solids 50, 2107–2121 (2002)

    Article  ADS  MATH  Google Scholar 

  13. Ren, Z.-Y., Zheng Q.-S.: Effects of grain sizes, shapes, and distribution on minimum sizes of representative volume elements of cubic polycrystals. Mech. Mater. 36, 1217–1229 (2004)

    Article  Google Scholar 

  14. Soize, C.: Random-field model for the elasticity tensor of anisotropic random media. C. R. Méc. 332, 1007–1012 (2004)

    Article  MATH  Google Scholar 

  15. Lachihab, A., Sab K.: Aggregate composites: a contact based modeling. Comp. Mat. Sci. 33, 467–490 (2005)

    Article  Google Scholar 

  16. Sab, K., Nedjar, B.: Periodization of random media and representative volume element size for linear composites. C. R. Méc. 333, 187–195 (2005)

    Google Scholar 

  17. Ostoja-Starzewski, M.: Material spatial randomness: from statistical to representative volume element. Probab. Eng. Mech. 21, 112–132 (2006)

    Article  Google Scholar 

  18. Löhnert, S., Wriggers, P.: Homogenization of microheterogeneous materials considering interfacial delamination at finite strains. Tech. Mech. 23, 167–177 (2003)

    Google Scholar 

  19. Löhnert, S.: Computational homogenization of microheterogeneous materials at finite strains including damage. Dissertation, Hannover University (2004)

  20. Hohe, J., Becker, W.: A probabilistic approach to the numerical homogenization of irregular solid foams in the finite strain regime. Int. J. Solids Struct. 42, 3549–3569 (2005)

    Article  MATH  Google Scholar 

  21. Kouznetsova, V., Geers, M.G.D., Brekelmans, W.A.M.: Size of a representative volume element in a second-order computational homogenization framework. Int. J. Mult. Comp. Eng. 2, 575–598 (2004)

    Article  Google Scholar 

  22. Ostoja-Starzewski, M.: Scale effects in plasticity of random media: status and challenges. Int. J. Plast. 21, 1119–1160 (2005)

    Article  MATH  Google Scholar 

  23. Khisaeva, Z.F., Ostoja-Starzewski, M.: Mesoscale bounds in finite elasticity of random composites. Proc. R. Soc. Lond. A 462, 1167–1180 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Torquato, S.: Random Heterogeneous Materials. Microstructure and Macroscopic Properties. Springer, Berlin Heidelberg New York (2002)

    MATH  Google Scholar 

  25. Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. A 326, 131–147 (1972)

    Article  ADS  MATH  Google Scholar 

  26. Nemat-Nasser, S.: Averaging theorems in finite deformation plasticity. Mech. Mater. 31, 493–523 (1999)

    Article  Google Scholar 

  27. Lee, S.J., Shield, R.T.: Variational principles in finite elastostatics. J. Appl. Math. Phys. (ZAMP) 31, 437–453 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ogden, R.W.: Extremum principles in nonlinear elasticity and their application to composites – I. Int. J. Solids Struct. 14, 265–282 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ponte Castañeda, P.: The overall constitutive behavior of nonlinearly elastic composites. Proc. R. Soc. Lond. A 422, 147–171 (1989)

    ADS  MATH  Google Scholar 

  30. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Gatos, K.G., Thomann, R., Karger-Kocsis, J.K.: Characteristics of ethylene propylene diene monomer rubber/organoclay nanocomposites resulting from different processing conditions and formulations. Polym. Int. 53, 1191–1197 (2004)

    Article  Google Scholar 

  32. Martin, P., Maquet, C., Legras, R., Bailly, C., Leemans, L., van Gurp, M., van Duin, M.: Particle-in-particle morphology in reactively compatibilized poly(butylene terephthalate)/epoxide-containing rubber blends. Polymer 45, 3277–3284 (2004)

    Article  Google Scholar 

  33. Wong, S.C., Mai, Y.W.: Effect of rubber functionality on microstructures and fracture toughness of impact-modified nylon 6,6/polypropylene blends. 1. Structure–property relationships. Polymer 40, 1553–1566 (1999)

    Article  Google Scholar 

  34. Schneider, M., Pith, T., Lambla, M.: Toughening of polystyrene by natural rubber-based composite particles. J. Mater. Sci. 32, 6331–6342 (1997)

    Article  Google Scholar 

  35. Brain network laboratory. Texas A&M University, Texas. http://research.cs.tamu.edu/bnl/galleryData.html. Cited 3 Apr (2006)

  36. Ogden, R.W.: Non-Linear Elastic Deformations. Halsted, New York (1984)

    Google Scholar 

  37. Rivlin, R.S.: Large elastic deformations of isotropic materials. I. Fundamental concepts. Phil. Trans. Roy. Soc. A 240, 459–490 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34, 484–501 (2004)

    Article  MATH  Google Scholar 

  39. Ostoja-Starzewski, M., Du, X., Khisaeva, Z.F., Li, W.: On the size of representative volume element in elastic, plastic, thermoelastic and permeable random microstructures. Keynote lecture in Thermec’2006, Int. Conf. Processing & Manufacturing Adv. Mater., Vancouver, Canada.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. F. Khisaeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khisaeva, Z.F., Ostoja-Starzewski, M. On the Size of RVE in Finite Elasticity of Random Composites. J Elasticity 85, 153–173 (2006). https://doi.org/10.1007/s10659-006-9076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-006-9076-y

Key words

Mathematics Subject Classifications (2000)

Navigation