Skip to main content
Log in

Convexity of the Strain-Energy Function in a Two-Scale Model of Ideal Fabrics

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A two-scale model is used to generate the macro-scale constitutive response of a sheet of woven fabric from a micro-scale model of interacting yarns regarded as crossed elasticae in contact. The model furnishes a macro-scale strain-energy function for an orthotropic membrane idealized as being weak in shear compared to the extensional resistance of material curves representing the yarns. The operative Legendre–Hadamard inequality for the membrane is derived and shown to be satisfied by a suitably relaxed version of the computed strain-energy function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buckley, C.P., Lloyd D.W., Konopasek, M.: On the deformation of slender filaments with planar crimp: Theory, numerical solution and applications to tendon collagen and textile materials. Proc. R. Soc. Lond. A372, 33–64 (1980)

    ADS  Google Scholar 

  2. Warren, W.E.: The elastic properties of woven polymeric fabric. Polym. Eng. Sci. 30, 1309–1313 (1990)

    Article  Google Scholar 

  3. Nadler, B., Papadopoulos P., Steigmann, D.J.: Multi-scale constitutive modeling and numerical analysis of fabric material. Int. J. Solids Struct. 43, 206–221 (2006)

    Google Scholar 

  4. Nadler, B., Steigmann, D.J.: A model for frictional slip in woven fabrics. C. R. Mec. 331, 797–804 (2003)

    Article  Google Scholar 

  5. Steigmann, D.J., Pipkin, A.C.: Equilibrium of elastic nets. Philos. Trans. R. Soc. Lond. A335, 419–454 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Berlin Heidelberg New York (1995)

    MATH  Google Scholar 

  7. Cohen, H., Wang, C.-C.: On the response and symmetry of elastic and hyperelastic membrane points. Arch. Ration. Mech. Anal. 85, 343–379 (1984)

    Google Scholar 

  8. Zhang, Y.T., Fu, Y.B.: A micro-mechanical model of woven fabric and its application to the analysis of buckling under uniaxial tension. I. The micro-mechanical model. Int. J. Eng. Sci. 28, 1895–1906 (2000)

    Article  Google Scholar 

  9. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin Heidelberg New York (1989)

    MATH  Google Scholar 

  10. Green, W.A., Shi, J.: Plane deformations of membranes formed with elastic cords. Q. J. Mech. Appl. Math. 43, 317–333 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pipkin, A.C.: Relaxed energy densities for large deformations of membranes. IMA J. Appl. Math. 52, 297 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Antman, S.S.: General solutions for planar elasticae having nonlinear stress-strain laws. Q. Appl. Math. 26, 35–47 (1968)

    MATH  Google Scholar 

  13. Ericksen, R., Davis, A., Warren, W.: Deflection force measurements and observation on kevlar 29 parachute fabric. Tex. Res. J. 62, 628–637 (1992)

    Google Scholar 

  14. van Tiel, J.: Convex Analysis.Wiley, New York (1984)

    MATH  Google Scholar 

  15. Haddow, J.B., Favre, L., Ogden, R.W.: Application of variational principles to the axial extension of a circular cylindrical nonlinearly elastic membrane. J. Eng. Math. 37, 65 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Koiter, W.T.: On the complementary energy theorem in non-linear elasticity theory. In: Fichera, G. (ed.) Trends in Applications of Pure Mathematics to Mechanics 2, pp. 207–232. Pitman, London (1976)

    Google Scholar 

  17. Steigmann, D.J.: Puncturing a thin elastic sheet. Int. J. Non-linear Mech. 40, 255–270 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Fleming, W.: Functions of Several Variables, 2nd ed. Springer, Berlin Heidelberg New York (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Steigmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadler, B., Papadopoulos, P. & Steigmann, D.J. Convexity of the Strain-Energy Function in a Two-Scale Model of Ideal Fabrics. J Elasticity 84, 223–244 (2006). https://doi.org/10.1007/s10659-006-9063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-006-9063-3

Key words

Mathematics Subject Classification (2000)

Navigation