Skip to main content
Log in

Two-dimensional Hierarchical Models for Prismatic Shells with Thickness Vanishing at the Boundary

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We construct variational hierarchical two-dimensional models for elastic, prismatic shells of variable thickness vanishing at boundary. With the help of variational methods, existence and uniqueness theorems for the corresponding two-dimensional boundary value problems are proved in appropriate weighted functional spaces. By means of the solutions of these two-dimensional boundary value problems, a sequence of approximate solutions in the corresponding three-dimensional region is constructed. We establish that this sequence converges in the Sobolev space H1 to the solution of the original three-dimensional boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions – II. Comm. Pure Appl. Math. 17 (1964) 35–92.

    Google Scholar 

  2. V. Arsenin, Methods of Mathematical Physics and Special Functions. Nauka, Moscow (1974).

    Google Scholar 

  3. M. Avalishvili, Investigation of a mathematical model of elastic bar with variable cross-section. Bull. Georgian Acad. Sci. 166(1) (2002) 16–19.

    MathSciNet  Google Scholar 

  4. M. Avalishvili and D. Gordeziani, Investigation of a hierarchical model of prismatic shells. Bull. Georgian Acad. Sci. 165(3) (2001) 485–488.

    Google Scholar 

  5. I. Babuška and L. Li, Hierarchic modelling of plates. Computers Structures 40 (1991) 419–430.

    Google Scholar 

  6. P.G. Ciarlet, Mathematical Elasticity, Vol. II: Theory of Plates. North-Holland, Amsterdam (1997).

    Google Scholar 

  7. M. Dauge, E. Faou and Z. Yosibash, Plates and shells: Asymptotic expansion and hierarchical models. In: E. Stein et al. (eds), Encyclopedia of Computational Mechanics, Vol. 1. Wiley, New York (2004) pp. 199–236.

    Google Scholar 

  8. G. Fichera, Existence Theorems in Elasticity, Boundary Constraints. Handbuch der Physik, Band 6a/2. Springer, Berlin (1972).

    Google Scholar 

  9. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Berlin, Springer (1977).

    Google Scholar 

  10. D.G. Gordeziani, To the exactness of one variant of the theory of thin shells. Soviet. Math. Dokl. 215(4) (1974) 751–754.

    Google Scholar 

  11. V. Guliaev, V. Baganov and P. Lizunov, Nonclassic Theory of Shells. Vischa Shkola, Lviv (1978), (in Russian).

    Google Scholar 

  12. G.V. Jaiani, Elastic bodies with non-smooth boundaries-cusped plates and shells. Z. Angew. Math. Mech. Suppl 2 76 (1996) 117–120.

    Google Scholar 

  13. G.V. Jaiani, On a mathematical model of bars with variable rectangular cross-sections. Z. Angew. Math. Mech. 81(3) (2001) 147–173.

    Google Scholar 

  14. G.V. Jaiani, S.S. Kharibegashvili, D.G. Natroshvili and W.L. Wendland, Hierarchical models for cusped plates. Preprint 2002/13, University of Stuttgart, Mathematical Institute A, Stuttgart (2002).

  15. I. Khoma, The Generalized Theory of Anisotropic Shells. Naukova Dumka, Kiev (1986), (in Russian).

    Google Scholar 

  16. V.A. Kondratiev, On the solvability of the first boundary value problem for the strong elliptic equations. Trudy Moskov. Mat. Obshch. 16 (1967) 293–318 (in Russian).

    Google Scholar 

  17. J.L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972).

    Google Scholar 

  18. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge Univ. Press, Cambridge (2000).

    Google Scholar 

  19. T.V. Meunargia, On nonlinear and nonshallow shells. Bulletin of TICMI (1998) 46–49.

  20. S.G. Mikhlin, Variational Methods in Mathematical Physics. Nauka, Moscow (1970), (in Russian).

    Google Scholar 

  21. I.P. Natanson, Theory of Functions of a Real Variable. Nauka, Moscow (1974), (in Russian).

    Google Scholar 

  22. S.A. Nazarov, Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell). Sbornik Math. 191(7) (2000) 1075–1106.

    Google Scholar 

  23. J. Neĉas, Les Méthodes Directes en Théorie des Équations Elliptiques. Masson, Paris (1967).

    Google Scholar 

  24. O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical Problems in Elastisity and Homogenization, Studies in Mathematics and its Applications 26. North-Holland, Amsterdam/New York (1992).

    Google Scholar 

  25. C. Schwab, A-posteriori modelling error estimation for hierarchical plate models. Numer. Math. 74 (1996) 221–259.

    Google Scholar 

  26. H. Triebel, Theory of Function Spaces. Birkhäuser, Boston (1983).

    Google Scholar 

  27. T.S. Vashakmadze, The Theory of Anisotropic Plates. Kluwer Academic, Dordrecht (1999).

    Google Scholar 

  28. I.N. Vekua, On a way of calculating of prismatic shells. Proc. A. Razmadze Institute Math. Georgian Acad. Sci. 21 (1955) 191–259 (in Russian).

    Google Scholar 

  29. I.N. Vekua, The theory of thin shallow shells of variable thickness. Proc. A. Razmadze Institute Math. Georgian Acad. Sci. 30 (1965) 5–103 (in Russian).

    Google Scholar 

  30. I.N. Vekua, Shell Theory: General Methods of Construction. Pitman Advanced Publishing Program, London (1985).

    Google Scholar 

  31. M. Vogelius and I. Babuška, On a dimensional reduction method I, II, III. Math. Comp. 37 (1981) 31–46, 47–68, 361–384.

    Google Scholar 

  32. V.S. Zhgenti, To investigation of stress state of isotropic thick-walled shells of nonhomogeneous structure. Appl. Mech. 27(5) (1991) 37–44 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mathematics Subject Classifications (2000)

74K20, 74K25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaiani, G., Kharibegashvili, S., Natroshvili, D. et al. Two-dimensional Hierarchical Models for Prismatic Shells with Thickness Vanishing at the Boundary. J Elasticity 77, 95–122 (2004). https://doi.org/10.1007/s10659-005-5069-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-005-5069-5

Keywords

Navigation