Skip to main content
Log in

Global existence and exponential stability of solutions to thermoelastic equations of hyperbolic type

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper we prove the global existence and exponential stability of solutions to thermoelastic equations of hyperbolic type provided that the initial data are close to the equilibrium and the relaxation kernel is strongly positive definite and decays exponentially. Moreover, the global solution, together with its the third-order full energy, is exponentially stable for any t > 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Burns, Z. Liu and S. Zheng, On the energy decay of a linear thermoelastic bar. J. Math. Anal. Appl. 179 (1993) 574–591.

    MATH  MathSciNet  Google Scholar 

  2. B.D. Coleman and M.E. Gurtin, Equipresence and constitutive equation for rigid heat conductors. Z. Angew. Math. Phys. 18 (1967) 199–208.

    MathSciNet  Google Scholar 

  3. C.M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Rational Mech. Anal. 29 (1969) 241–271.

    Article  ADS  MathSciNet  Google Scholar 

  4. C.M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity. J. Differential Equations 7 (1970) 554–569.

    MATH  MathSciNet  Google Scholar 

  5. C.M. Dafermos, Asymptotic stability in viscoelasticity. Arch. Rational Mech. Anal. 37 (1970) 297–308.

    MATH  ADS  MathSciNet  Google Scholar 

  6. C.M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity. SIAM J. Math. Anal. 13 (1982) 397–408.

    MATH  MathSciNet  Google Scholar 

  7. C.M. Dafermos, Development of singularities in the motion of materials with fading memory. Arch. Rational Mech. Anal. 91 (1985) 193–205.

    MathSciNet  Google Scholar 

  8. C.M. Dafermos, Dissipation in materials with memory. In: Viscoelasticity and Rheology, Madison, WI, 1984. Academic Press, Orlando, FL (1985) pp. 221–234.

    Google Scholar 

  9. C.M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity. Nonlinear Anal. 6 (1982) 435–454.

    MATH  MathSciNet  Google Scholar 

  10. C.M. Dafermos and L. Hsiao, Development of singularities in solutions of the equations of nonlinear thermoelasticity. Quart. Appl. Math. 44 (1986) 463–474.

    MATH  MathSciNet  Google Scholar 

  11. C.M. Dafermos and J.A. Nohel, Energy methods for nonlinear hyperbolic Volterra integrodifferential equations. Comm. Partial Differential Equations 4 (1979) 219–278.

    MATH  MathSciNet  Google Scholar 

  12. C.M. Dafermos and J.A. Nohel, A nonlinear hyperbolic Volterra equation in viscoelasticity. In: Contribution to Analysis and Geometry, Baltimore, MD, 1980. Johns Hopkins Univ. Press, Baltimore, MD (1981) pp. 87–116.

    Google Scholar 

  13. M. Fabrizio and B. Lazzari, On the existence and asymptotic stability of solutions for linearly viscoelastic solids. Arch. Rational Mech. Anal. 116 (1991) 139–152.

    MATH  ADS  MathSciNet  Google Scholar 

  14. L.H. Fatori and J.E.M. Rivera, Energy decay for hyperbolic thermoelastic systems of memory type. Quart. Appl. Math. (to appear).

  15. J.S. Gibson, I.G. Rosen and G. Tao, Approximation in control of thermoelastic systems. J. Control Optim. 30 (1992) 1163–1189.

    MATH  MathSciNet  Google Scholar 

  16. C. Giorgi and M.G. Naso, On the exponential stability of linear non-Fourier thermoviscoelastic bar. Quaderni del Seminário Matemático di Brescia 2(97) (1997).

  17. M.E. Gurtin and A.C. Pipkin, A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal. 31 (1968) 113–126.

    MATH  ADS  MathSciNet  Google Scholar 

  18. S.W. Hansen, Exponential energy decay in a linear thermoelastic rod. J. Math. Anal. Appl. 167 (1992) 429–442.

    MATH  MathSciNet  Google Scholar 

  19. J.U. Kim, On the energy decay of a linear thermoelastic bar and plate. SIAM J. Math. Anal. 23 (1992) 889–899.

    MATH  MathSciNet  Google Scholar 

  20. J.E. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping. In: Internat. Series of Numerical Mathematics, Vol. 91 (1989) pp. 211–235.

    MathSciNet  Google Scholar 

  21. J.L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. 1. Springer, New York (1972).

    Google Scholar 

  22. Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermoviscoelasticity. Quart. Appl. Math. 54 (1996) 21–31.

    MATH  MathSciNet  Google Scholar 

  23. Y. Qin, Asymptotic behaviour for global smooth solution to a one-dimensional nonlinear thermoviscoelastic system. J. Partial Differential Equations 12 (1999) 111–134.

    MATH  MathSciNet  Google Scholar 

  24. Y. Qin, Global existence and asymptotic behaviour of the solution to the system in one-dimensional nonlinear thermoviscoelasticity. Quart. Appl. Math. 59 (2001) 113–142.

    MATH  MathSciNet  Google Scholar 

  25. R. Racke and Y. Shibata, Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity. Arch. Rational Mech. Anal. 116 (1991) 1–34.

    MATH  ADS  MathSciNet  Google Scholar 

  26. R. Racke, Y. Shibata and S. Zheng, Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity. Quart. Appl. Math. 51 (1993) 751–763.

    MATH  MathSciNet  Google Scholar 

  27. M. Renardy, W.J. Hrusa and J.A. Nohel, Mathematical Problems in Viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 35. Longman Scientific and Technical, Harlow (1987).

    MATH  Google Scholar 

  28. J.E.M. Rivera, Energy decay rates in linear thermoelasticity. Funkcial Ekvac 35 (1992) 19–35.

    MATH  MathSciNet  Google Scholar 

  29. J.E.M. Rivera and R. Barreto, Existence and exponential decay in nonlinear thermoelasticity. Nonlinear Anal. 31 (1998) 149–162.

    MATH  MathSciNet  Google Scholar 

  30. J.E.M. Rivera and Y. Qin, Global existence and exponential stability in one-dimensional nonlinear thermoelasticity with thermal memory. Nonlinear Anal. 51 (2002) 11–32.

    MATH  MathSciNet  Google Scholar 

  31. M. Slemrod, Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity. Arch. Rational Mech. Anal. 76 (1981) 97–133.

    MATH  ADS  MathSciNet  Google Scholar 

  32. O.J. Staffans, On a nonlinear hyperbolic Volterra equation. SIAM J. Math. Anal. 11 (1980) 793–812.

    MATH  MathSciNet  Google Scholar 

  33. S. Zheng, Global solution and application to a class of quasilinear hyperbolic-parabolic coupled system. Sci. Sinica Ser. A 27 (1984) 1274–1286.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Y., Muñoz Rivera, J.E. Global existence and exponential stability of solutions to thermoelastic equations of hyperbolic type. J Elasticity 75, 125–145 (2005). https://doi.org/10.1007/s10659-005-4332-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-005-4332-0

Key words

Mathematics Subject Classifications (2000)

Navigation