Skip to main content
Log in

Spatial Stability for the Quasi-static Problem of Thermoelasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This paper is concerned with the quasi-static problem of thermoelasticity. The classical system of equations of thermoelasticity is a coupling of an elliptic equation with a parabolic equation. It poses some new mathematical difficulties. Here we study the exponential spatial decay of solutions. An upper bound for the amplitude in terms of the boundary and initial conditions is obtained. The extension of the spatial stability results to thermoelasticity of type III is also treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Ames and B. Straughan, Non-Standard and Improperly Posed Problems. Academic Press, San Diego (1997).

    Google Scholar 

  2. F. Bofill and R. Quintanilla, Thermal influence on the decay of end effects in linear elasticity. Supplemento di Rendiconti del Circolo Matematico di Palermo 57 (1998) 57–62.

    MathSciNet  Google Scholar 

  3. D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature. Appl. Mech. Rev. 51 (1998) 705–729.

    Google Scholar 

  4. J.N. Flavin, R.J. Knops and L.E. Payne, Decay estimates for the constrained elastic cylinder of variable cross section. Quart. Appl. Math. XLVII (1989) 325–350.

    MathSciNet  Google Scholar 

  5. A.E. Green and K.A. Lindsay, Thermoelasticity. J. Elasticity 2 (1992) 1–7.

    Google Scholar 

  6. A.E. Green and P.M. Naghdi, A re-examination of the basic postulates of themomechanics. Proc. Roy. Soc. London A 432 (1991) 171–194.

    MATH  ADS  MathSciNet  Google Scholar 

  7. A.E. Green and P.M. Naghdi, On undamped heat waves in an elastic solid. J. Thermal Stresses 15 (1992) 253–264.

    ADS  MathSciNet  Google Scholar 

  8. A.E. Green and P.M. Naghdi, Thermoelasticity without energy dissipation. J. Elasticity 31 (1993) 189–208.

    Article  MATH  MathSciNet  Google Scholar 

  9. A.E. Green and P.M. Naghdi, A unified procedure for contruction of theories of deformable media, I Classical continuum physics, II Generalized continua, III Mixtures of interacting continua. Proc. Roy. Soc. London A 448 (1995) 335–356, 357–377, 379–388.

    MATH  ADS  MathSciNet  Google Scholar 

  10. R.B. Hetnarski and J. Ignaczak, Generalized thermoelasticity. J. Thermal Stresses 22 (1999) 451–470.

    MathSciNet  Google Scholar 

  11. C.O. Horgan, Recent developments concerning Saint-Venant’s principle: An update. Appl. Mech. Rev. 42 (1989) 295–303.

    Article  MathSciNet  Google Scholar 

  12. C.O. Horgan, Recent developments concerning Saint-Venant’s principle: A second update. Appl. Mech. Rev. 49 (1996) 101–111.

    Google Scholar 

  13. C.O. Horgan and J.K. Knowles, Recent developments concerning Saint-Venant’s principle. In: T.Y. Wu and J.W. Hutchinson (eds), Advances in Applied Mechanics, Vol. 23. Academic Press, New York (1983) pp. 179–269.

    Google Scholar 

  14. C. Lupoli, A Pragmen-Lindelof principle for the thermoelastic cylinder of variable cross-section. Meccanica 28 (1993) 315–322.

    MATH  Google Scholar 

  15. R. Quintanilla, Logarithmic convexity in thermoelasticity of type III. In: A. Bermúdez, D. Gómez, C. Hazard, P. Joly and J.E. Roberts (eds), Mathematical and Numerical Aspects of Wave Propagation. SIAM, Philadelphia, PA (2000) pp. 192–196.

    Google Scholar 

  16. R. Quintanilla, End effects in thermoelasticity. Math. Methods Appl. Sci. 24 (2001) 93–102.

    MATH  ADS  MathSciNet  Google Scholar 

  17. R. Quintanilla, Damping of end effects in a thermoelastic theory. Appl. Math. Lett. 14 (2001) 137–141.

    MATH  MathSciNet  Google Scholar 

  18. R. Quintanilla, Spatial asymptotic behaviour in incremental thermoelasticity. Asymptotic Anal. 27 (2001) 265–279.

    MATH  MathSciNet  Google Scholar 

  19. R. Quintanilla, Existence in thermoelasticity without energy dissipation. J. Thermal Stresses 25 (2002) 195–202.

    MathSciNet  Google Scholar 

  20. R. Quintanilla and B. Straughan, Growth and uniqueness in thermoelasticity. Proc. Roy. Soc. London A 456 (2000) 1419–1429.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Quintanilla.

Additional information

Dedicated to C.O. Horgan on the occasion of his 60th birthday

Mathematics Subject Classifications (2000)

74F05, 74G50.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quintanilla, R. Spatial Stability for the Quasi-static Problem of Thermoelasticity. J Elasticity 76, 93–105 (2004). https://doi.org/10.1007/s10659-004-3334-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-004-3334-7

Keywords

Navigation