Skip to main content

Advertisement

Log in

Challenges and recommendations for the development of cultural control of aerial oomycete-associated diseases in protected horticulture

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A lack of available host resistance due to the emergence of novel plant pathogen isolates and restriction in the use of chemical control means that additional approaches should be considered as part of an integrated pest management (IPM) programme for the control of crop diseases. As each stage of the pathogen lifecycle is influenced by climatic conditions, so modification of the growing environment could be used to help prevent or control disease outbreaks in protected horticulture systems. This is particularly important in Controlled Environment Agriculture (CEA) where product marketing is often reliant on an absence of chemical crop protection products. This review examines the environmental factors affecting plant diseases in protected cropping and summarises the cultural control studies made in relation to manipulating these conditions with regard to disease management using a case study of aerial oomycetes. Aerial oomycete pathogens are responsible for a wide range of commercially important diseases in both protected and field horticultural production. They include the causal agents of downy mildews and some Phytophthora infections and can be rapidly spread via airborne spores. We also discuss the importance of interactions between environmental factors on pathogen biology, outline disease modelling studies which aim to aid outbreak prediction and provide recommendations for the generation and use of effective cultural control procedures in protected horticulture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achar, P. N. (1998). Effects of temperature on germination of Peronospora parasitica conidia and infection of Brassica oleracea. Journal of Phytopathology, 146, 137–141.

  • Anon. (1988). Downy mildew of snapdragons RPD No. 657. University of Illinois. http://ipm.illinois.edu/diseases/series600/rpd657/

  • Becktell, M. C., Daughtrey, M. L., & Fry, W. E. (2005a). Temperature and leaf wetness requirements for pathogen establishment, incubation period, and sporulation of Phytophthora infestans on Petunia x hybrida. Plant Disease, 89, 975–979.

    Article  CAS  PubMed  Google Scholar 

  • Becktell, M. C., Daughtrey, M. L., & Fry, W. E. (2005b). Epidemiology and management of petunia and tomato late blight in the greenhouse. Plant Disease, 89, 1000–1008.

    Article  CAS  PubMed  Google Scholar 

  • Belbahri, L., Calmin, G., Lefort, F., & Pawlowski, J. (2005). Phylogenetic analysis and real time PCR detection of a new Peronospora species responsible for downy mildew disease of sweet basil and sage. Mycological Research, 109, 1276–1287.

    Article  CAS  PubMed  Google Scholar 

  • Bello, J. C., Sakalidis, M. L., Perla, D. E., & Hausbeck, M. K. (2021). Detection of airborne sporangia of Pseudoperonospora cubensis and P. humuli in Michigan using Burkhard spore traps coupled to quantitative PCR. Plant Disease, 105(5), 1373–1381.

    Article  CAS  PubMed  Google Scholar 

  • Bhat, J. A., Thind, T. S., Bala, A., & Kumar, P. (2013). Factors affecting development of downy mildew of cucumber grown under plastic low tunnel and its management with fungicides. Plant Disease Research (Ludhiana), 28(1), 58–63.

    Google Scholar 

  • Chen, D. S., Zheng, H. S., & Liu, H. Z. (1989). A primary discussion on adjustment of dew duration by natural ventilation to control downy mildew of cucumber in plastic greenhouse. Beijing; China: International Academic Publishers. Potentialities of agricultural engineering in rural development. Proceedings of the international symposium on agricultural engineering (89-ISAE), Beijing, China, 12-15 September 1989. Volume II. Beijing: International Academic Publishers, 1989, 684-688. Hort. Abst., 61, 1951.

  • Choudhury, R., Koike, S., Fox, A., Anchieta, A., Subbarao, K., Klosterman, S., & McRoberts, N. (2016). Season-Long Dynamics of Spinach Downy mildew Determined by Spore Trapping and Disease Incidence. Phytopathology, 106(11), 1311–1318.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, Y. (1977). The combined effects of temperature, leaf wetness, and inoculum concentration on infection of cucumbers with Pseudoperonospora cubensis. Canadian Journal of Botany, 55, 1478–1487.

    Article  Google Scholar 

  • Cohen, Y., & Eyal, H. (1977). Growth and differentiation of sporangia and sporangiophores of Pseudoperonospora cubensis on cucumber cotyledons under various combinations of light and temperature. Physiological Plant Pathology, 10(2), 93–103.

    Article  Google Scholar 

  • Cohen, Y., & Eyal, H. (1980). Effects of light during infection on the incidence of downy mildew (Pseudoperonospora cubensis) on cucumbers. Physiological Plant Pathology, 17(1), 53–62.

    Article  Google Scholar 

  • Cohen, Y., & Rubin, A. E. (2015). Daytime solar heating controls downy mildew Peronospora belbahrii in sweet basil. PLoS One, 10(5), e0126103–e0126103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen, Y., & Ben-Naim, Y. (2016). Nocturnal fanning suppresses downy mildew epidemics in sweet basil. PLoS One, 11(5), e0155330–e0155330.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen, Y., Levi, Y., & Eyal, H. (1978). Sporogenesis of some fungal plant pathogens under intermittent light conditions. Canadian Journal of Botany, 56(20), 2538–2543.

    Article  Google Scholar 

  • Cohen, Y., Vaknin, M., Ben-Naim, Y., & Rubin, A. E. (2013). Light suppresses sporulation and epidemics of Peronospora belbahrii. PLoS One, 8(11), e81282–e81282.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen, Y., Ben Naim, Y., Falach, L., & Rubin, A. E. (2017). Epidemiology of Basil Downy mildew. Phytopathology, 107(10), 1149–1160.

    Article  PubMed  Google Scholar 

  • Correll, J. C., Morelock, T. E., Black, M. C., Koike, S. T., Brandenberger, L. P., & Dainello, F. J. (1994). Economically important diseases of spinach. Plant Disease, 78, 653–660.

  • De Weille, G. A. (1964). Forecasting crop infection by the potato blight fungus. Meded. Verh. K. Ned. Met. Inst., 82, 1–144.

    Google Scholar 

  • Defra. (2005). The development of a generic disease management system to control downy mildew in transplanted vegetable crops. Defra project final report HH3217TFV. Available at: https://sciencesearch.defra.gov.uk/ProjectDetails?ProjectId=11063. Accessed 4 Aug 2020.

  • Defra. (2011). Assessing the potential for control of Pythium and Phytophthora in water by ultrasound. Defra project report PS2132. Available at: https://sciencesearch.defra.gov.uk/ProjectDetails?ProjectId=17605. Accessed 4 Aug 2020.

  • Defra. (2022). Horticulture Statistics 2021. Available at: https://www.gov.uk/government/statistics/latest-horticulture-statistics. Accessed 4 Aug 2020.

  • Dhar, N., Bullo, E. M., Subbarao, K. V., Koike, S. T., Fox, A., Anchieta, A., & Klosterman, S. T. (2020). Measurements of aerial spore load by qPCR facilitates lettuce downy mildew risk advisement. Plant Disease, 104(1), 82–93.

    Article  CAS  PubMed  Google Scholar 

  • Ding, X. T., Hao, T., Jin, H. J., Zhang, H. M., & Yu, J. Z. (2014). Effects of plastic mulching methods on microclimate and cucumber growth in vinyl houses. Acta Agriculturae Shanghai, 30(4), 22–28.

    Google Scholar 

  • Ding, X. T., Jiang, Y. P., Hao, T., Jin, H. J., Zhang, H. M., He, L. Z., Zhou, Q., Huang, D. F., Hui, D. F., & Yu, J. Z. (2016). Effects of heat shock on photosynthetic properties, antioxidant enzyme activity, and downy mildew of cucumber (Cucumis sativus L.). PLoS One, 11(4), e0152429–e0152429.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dou, H., Niu, G., & Gu, M. (2018). Pre-harvest UV-B radiation and photosynthetic photon flux density interactively affect plant photosynthesis, growth, and secondary metabolites accumulation in basil (Ocimum basilicum) plants. Agronomy, 9(8), 434.

    Article  Google Scholar 

  • Elad, Y., Omer, C., Nisan, Z., Harari, D., Goren, H., Adler, U., Silverman, D., & Biton, S. (2016). Passive heat treatment of sweet basil crops suppresses Peronospora belbahrii downy mildew. Annals of Applied Biology, 168(3), 373–389.

    Article  CAS  Google Scholar 

  • Felton, M. W., & Walker, J. C. (1946). Environmental factors affecting downy mildew of cabbage. Journal of Agricultural Research, 72, 69–81.

  • Farahani-Kofoet, R. D., Romer, P., & Grosch, R. (2012). Systemic spread of downy mildew in basil plants and detection of the pathogen in seed and plant samples. Mycological Progress, 11, 961–966.

    Article  Google Scholar 

  • Farahani-Kofoet, R. D., Brandle, F., & Grosch, R. (2018). Molecular characterisation of downy mildew caused by Perofascia lepidii on garden cress and conditions favouring disease development. Journal of Plant Diseases and Protection 125(5), 491–500.

  • Frinking, H. D., Geerds, C. F. & Meerman, F. (1981). Germination of Peronospora farinosa f. sp. spinaciae conidia: a two-topped temperature curve. Netherlands Journal of Plant Pathology 87, 163–165.

  • Garibaldi, A., Bertetti, D., & Gullino, M. L. (2007). Effect of leaf wetness duration and temperature on infection of downy mildew (Peronospora sp.) of basil. Journal of Plant Diseases and Protection, 114, 6–8.

    Article  Google Scholar 

  • Gilardi, G., Pintore, I., Demarchi, S., Gullino, M. L., & Garibaldi, A. (2015). Seed dressing to control downy mildew of basil. Phytoparasitica, 43(4), 531–539.

    Article  CAS  Google Scholar 

  • Gilardi, G., Pugliese, M., Chitarra, W., Ramon, I., Gullino, M. L., & Garibaldi, A. (2016). Effect of elevated atmospheric CO2 and temperature increases on the severity of basil downy mildew caused by Peronospora belbahrii under phytotron conditions. Journal of Phytopathology, 164(2), 114–121.

    Article  CAS  Google Scholar 

  • Granke, L. L., & Hausbeck, M. K. (2011). Dynamics of Pseudoperonospora cubensis sporangia in commercial cucurbit fields in Michigan. Plant Disease, 95, 1392–1400.

    Article  CAS  PubMed  Google Scholar 

  • Granke, L. L., Morrice, J. J., & Hausbeck, M. K. (2014). Relationships between airborne Pseudoperonospora cubensis sporangia, environmental conditions, and cucumber downy mildew severity. Plant Disease, 98, 674–681.

    Article  CAS  PubMed  Google Scholar 

  • Gullino, M. L., Gilardi, G., & Garibaldi, A. (2012). Diagnostics and tanning against seed-borne diseases. / Diagnostica e concia contro le malattie trasmesse da seme. Informatore Agrario, 68(37), 64–66.

    Google Scholar 

  • Harrison, J. G., & Lowe, R. (1989). Effects of humidity and air speed on sporulation of Phytophthora infestans on potato leaves. Plant Pathology, 38, 585–591.

    Article  Google Scholar 

  • Hartmann, H., Sutton, J. C., & Procter, R. (1983). Effects of atmospheric water potentials, free water, and temperature on production and germination of sporangia in Peronospora parasitica. Canadian Journal of Plant Pathology, 5, 70–74.

  • Hausbeck, M. K., Pennypacker, S. P., & Stevenson, R. E. (1996). The use of forced heated air to manage botrytis stem blight of geranium stock plants in a commercial greenhouse. Plant Disease, 80, 940–943.

    Article  Google Scholar 

  • Herforth Rahmé, J., Fuchs, J., Hofer, V., Schnueriger, M., Schaerer, H. J. & Koller, M. (2017). Bioseedling: A chain approach to the production of healthier seeds and seedlings of Lamb’s lettuce Valerianella locusta. Acta Horticulturae. 39–46.

  • IMARC Group. (2022). Greenhouse horticulture market: Global industry trends, share, size, growth, opportunity and forecast 2022-2027. ID: 5530566. Available at: https://www.imarcgroup.com/greenhouse-horticulture-market. Accessed 4 Aug 2020.

  • Inglis, D. A., Gundersen, B., Miles, C., Walters, T., & Roozen, J. (2009). Control of late blight caused by Phytophthora infestans on tomato cultivars using a high tunnel system. Plant Disease Management Reports, 3, V057.

  • Jang, P., & Safeeulla, K. M. (1990). Modes of entry, establishment and seed transmission of Peronospora parasitica in radish. Proceedings Indian Academic Science (Plant Science), 100, 369–373.

  • Jennings, P. (2016a). Identification of factors which influence infection and control of the newly emerged Peronospora causing downy mildew on aquilegia. AHDB final report for project HNS 196a. Available at: https://ahdb.org.uk/research. Accessed 4 Aug 2020.

  • Jennings, P. (2016b). Basil: improving knowledge and control of downy mildew in protected and outdoor crops. Annual report for project PE 024. Available at: https://ahdb.org.uk/research. Accessed 4 Aug 2020.

  • Jennings, P. (2019). Basil: improving knowledge and control of downy mildew in protected and outdoor crops. AHDB final report for project PE 024a. Available at: https://ahdb.org.uk/research. Accessed 4 Aug 2020.

  • Kawashiro, H., Sakiyama, H., Kusakawa, T., & Udagawa, Y. (2010). Effects of air temperature in the greenhouse on thermal environment, work load, growth and fruit yield of cucumber in forced culture. Horticultural Research (Japan), 9(1), 67–72.

    Article  Google Scholar 

  • Kofoet, A., & Fink, M. (2007). Development of Peronospora parasitica epidemics on radish as modelled by the effects of water vapour saturation deficit and temperature. European Journal of Plant Pathology, 117(4), 369–381.

    Article  Google Scholar 

  • Kral, G., & Gebelein, D. (2000). Strategy with reduced air humidity as a possible control measure against downy mildew under protected cultivation. / Entfeuchtungsstrategie als Bekämpfungsmöglichkeit des Falschen Mehltaus der Gurke im Anbau unter Glas. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 52(5), 105–110.

    Google Scholar 

  • Kumar, R., & Srivastava, B. K. (1998). Effect of low plastic tunnels on the incidence of late blight of tomato. Crop Research, 15, 279–280.

    Google Scholar 

  • Kunjeti, S. G., Anchieta, A., Martin, F. N., Choi, Y. J., Thines, M., Michelmore, R. W., Koike, S. T., Tsuchida, C., Mahaffee, W., Subbarao, K. V., & Klosterman, S. J. (2016). Detection and quantification of Bremia lactucae by spore trapping and quantitative PCR. Phytopathology, 106(11), 1426–1437.

    Article  CAS  PubMed  Google Scholar 

  • Lakra, B. S. (2001). Epiphytology and losses of downy mildew (Peronospora parasitica) of radish (Raphanus sativus) seed crop. Indian Journal of Agricultural Sciences, 71, 321–324.

  • Lego, L. (2009). Spore exclusion – a new approach to downy mildew prevention in cucurbits. Final report for project, FNE09–FN664.

  • Li, M., Qian, J. P., Yang, X. T., Sun, C. H., & Ji, Z. T. (2010). A PDA-based record-keeping and decision support system for traceability in cucumber production. Computers and Electronics in Agriculture, 70, 69–77.

    Article  Google Scholar 

  • López-López, A., Koller, M., Herb, C. & Schaerer, H. J. (2014). Influence of light management on the sporulation of downy mildew on sweet basil. Acta Horticulturae, 1041, 213–219.

  • Ma, S. Q., Liang, H. H., & Ma, J. X. (1990). Study on the ecological way of preventing cucumber downy mildew: a report of a control experiment on the environmental temperature. Chinese Journal of Applied Ecology, 1(2), 136–141.

    Google Scholar 

  • Manole, M. S., Dobrin, E., & Ciofu, R. (2009). Researches regarding the possibility of reducing the disease attack and pests on tomatoes by protecting the crops with photoselective foils. Lucrari Stiintifice - Universitatea de Stiinte Agronomice si Medicina Veterinara Bucuresti. Seria B, Horticultura, 53, 137–140.

    Google Scholar 

  • Marx, P., Gärber, U., & Gebelein, D. (2010). Downy mildew in organically grown cucumber - regulation by specific climate-based strategy. / Falscher Mehltau an Gurke im ökologischen Gemüseanbau unter Glas - Regulierung durch gezielte Klimasteuerung. Quedlinburg; Germany: Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen.57. Deutsche Pflanzenschutztagung, Berlin, Germany, 6-9 September, 2010. Available at: https://ojs.openagrar.de/index.php/JKA/article/view/399/1451. Accessed 4 Aug 2020.

  • Mazumdar, P., Singh, P., Kethiravan, D., Ramathani, I., & Ramakrishnan, N. (2021). Late blight in tomato: insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities. Planta, 253, 119.

    Article  CAS  PubMed  Google Scholar 

  • McGrath, M. T. (2019). Expect and prepare for downy mildew in basil. Cornell University Long Island Horticultural Research and Extension Center. Available at: http://vegetablemdonline.ppath.cornell.edu/NewsArticles/Basil%20Downy%20Mildew-VegMD-McGrath-2019.pdf. Accessed 4 Aug 2020.

  • Merk, H. L., Ashrafi, H., & Foolad, M. R. (2012). Selective genotyping to identify late blight resistance genes in an accession of the wild species Solanum pimpinellifolium. Euphytica, 187, 63–75.

    Article  Google Scholar 

  • Michelmore, R., & Wong, J. (2008). Classical and molcecular genetics of Bremia lactucae, cause of lettuce downy mildew. European Journal of Plant Pathology, 122, 19–30.

    Article  CAS  Google Scholar 

  • Minchinton, E. (1998). Review of downy mildews on nursery plants. Horticultural Research and Development Corporation Project NY406. Available at: http://ausvegvic.com.au/pdf/r&d_NY9406_Review_of_Downy_Mildew.pdf. Accessed 4 Aug 2020.

  • Minogue, K. P., & Fry, W. E. (1981). Effects of temperature, relative humidity, and rehydration rate on germination of dried sporangia of Phytophthora infestans. Phytopathology, 71, 1181–1184.

    Article  Google Scholar 

  • Mizubuti, E. S. G., Aylor, D. E., & Fry, W. E. (2000). Survival of Phytophthora infestans sporangia exposed to solar radiation. Phytopathology, 90, 78–84.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, W. M. (1985). Influence of energy-saving night temperature regimes in Botrytis cinerea in an early-season glasshouse tomato crop. Crop Protection, 4, 99–110.

    Article  Google Scholar 

  • Mosadegh, H., Trivellini, A., Lucchesini, M., Ferrante, A., Maggini, R., Vernieri, P., & Mensuali Sodi, A. (2019). UV-B physiological changes under conditions of distress and eustress in sweet basil. Plants, 8(10), 396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nega, E., Ulrich, R., Werner, S., & Jahn, M. (2001). Effect of hot water treatment against seed borne pathogens on vegetable seeds. / Zur Wirkung der Heisswasserbehandlung gegen samenbürtige Pathogene an Gemüsesaatgut. Gesunde Pflanzen, 53(6), 177–184.

    Google Scholar 

  • Neufeld, K. N., & Ojiambo, P. S. (2012). Interactive Effects of Temperature and Leaf Wetness Duration on Sporangia Germination and Infection of Cucurbit Hosts by Pseudoperonospora cubensis. Plant Disease, 96(3), 345–353.

    Article  CAS  PubMed  Google Scholar 

  • Nordskog, B., Gadoury, D. M., Seem, R. C., & Hermansen, A. (2007). Impact of diurnal periodicity, temperature, and light on sporulation of Bremia lactucae. Phytopathology, 97(8), 979–986.

    Article  PubMed  Google Scholar 

  • Nowaki, M., Foolad, M. R., Nowakowska, M., & Kozik, E. (2012). Potato and tomato late blight caused by Phytophthora infestans: An overview of pathology and resistance breeding. Plant Disease, 96, 4–17.

    Article  Google Scholar 

  • O’Neill, T. (2014). Control of downy mildew on shrub and herbaceous plants. HDC final report for project HNS 186. Available at: https://ahdb.org.uk/research. Accessed 4 Aug 2020.

  • Patel, J. S., Zhang, S. A., & McGrath, M. T. (2016). Red Light Increases Suppression of Downy mildew in Basil by Chemical and Organic Products. Journal of Phytopathology, 164(11–12), 1022–1029.

    Article  CAS  Google Scholar 

  • Patel, J. S., Radetsky, L., Plummer, T., Bierman, A., Gadoury, D. M., & Rea, M. (2017). Pre-inoculation treatment of basil plants with ultraviolet-B radiation induces resistance to downy mildew. Phytopathology, 107(12), 52–52.

    Google Scholar 

  • Patel, J., Radetsky, L., & Rea, M. (2019). Red and blue LEDs used for horticulture lighting can suppress sporulation of Peronospora belbahrii, the causal organism of basil downy mildew. Phytopathology, 109(10), 73–73.

    Google Scholar 

  • Populer, C. (1981). Epidemiology of downy mildews (Pages 57–105 in: The Downy mildews. downy mildew Spencer, ed). Academic Press.

    Google Scholar 

  • Powell, M., Gundersen, B., Cowan, J., Miles, C. A., & Inglis, D. A. (2014). The Effect of Open-Ended High Tunnels in Western Washington on Late Blight and Physiological Leaf Roll Among Five Tomato Cultivars. Plant Disease, 98(12), 1639–1647.

    Article  CAS  PubMed  Google Scholar 

  • Powlesland, R. (1954). On the biology of Bremia lactucae. Transactions of the British Mycological Society, 37, 362–371.

  • Raabe, R. D., & Pound, G. S. (1952). Relation of certain environal [sic] factors to initiation and development of the white rust disease of spinach. Phytopathology, 42, 448–452.

  • Radetsky, L., Patel, J. S., & Rea, M. S. (2020). Continuous and Intermittent Light at Night, Using Red and Blue LEDs to Suppress Basil Downy mildew Sporulation. HortScience, 55(4), 483–486.

    Article  Google Scholar 

  • Rahman, A., Standish, J. R., D’Arcangelo, K. N., & Quesada-Ocampo, L. M. (2021). Clade-specific biosurveillance of Pseudoperonospora cubensis using spore traps for precision disease management of cucurbit downy mildew. Phytopathology, 111(2), 312–320.

    Article  CAS  PubMed  Google Scholar 

  • Raffray, J. B., & Sequiera, L. (1971). Dark induction of sporulation in Bremia lactucae. Canadian Journal of Botany, 49, 237–239.

    Article  Google Scholar 

  • Reuveni, R., & Raviv, M. (1997a). Control of downy mildew in greenhouse-grown cucumbers using blue photoselective polyethylene sheets. Plant Disease, 81(9), 999–1004.

  • Reuveni, R., & Raviv. M. (1997b). Manipulation of light for the management of foliar pathogens of greenhouse crops. The story of the establishment of a new discipline (pp. 269Ð281). In CIPA Proceedings. International Congress for Plastics in Agriculture. Tel Aviv, Israel.

  • Roberts, J. M., Bruce, T. J. A., Monaghan, J. M., Pope, T. W., Leather, S. R., & Beacham, A. M. (2020). Vertical farming systems bring new considerations for pest and disease management. Annals of Applied Biology, 176(3), 226–232.

    Article  Google Scholar 

  • SARE (2012). Spore exclusion high tunnel. Sustainable Agriculture Research and Education. Final Report for FNE12-755.

  • Sato, T., & Kubo, M. (2002). Reducing the need for chemical spraying of summer greenhouse cucumber: heat-shock controls disease and insect damage. Acta Horticulturae, 588, 165–170.

    Article  Google Scholar 

  • Sato, T., Takiguchi, T., Matsuura, K., Narimatsu, J., & Mizuno, N. (2003). Effects of high temperature caused by non-ventilation of greenhouse on the growth and prevention of disease and insect damage in summer-grown cucumber. Journal of the Japanese Society for Horticultural Science, 72(1), 56–63.

    Article  Google Scholar 

  • Scherm, H., & van Bruggen, A. H. C. (1993). Response surface models for germination and infection of Bremia lactucae, the fungus causing downy mildew of lettuce. Ecological Modelling, 65, 281–296.

    Article  Google Scholar 

  • Shtienberg, D., Vintal, H., Targerman, M., Mesika, Y., Adler, U., Matan, E., & Elad, Y. (2004). Integrated management of late blight in greenhouse tomatoes. Proceedings of a Meeting of the IOBC/WPRS Working Groups 'Management of Plant Diseases and Arthropod Pests by BCAs and their integration in Agricultural Systems', Trentino, Italy, 9-13 June 2004. Bulletin OILB/SROP, 27(8), 115–115.

    Google Scholar 

  • Shtienberg, D., Elad, Y., Bornstein, M., Ziv, G., Grava, A., & Cohen, S. (2010). Polyethylene Mulch Modifies Greenhouse Microclimate and Reduces Infection of Phytophthora infestans in Tomato and Pseudoperonospora cubensis in Cucumber. Phytopathology, 100(1), 97–104.

    Article  CAS  PubMed  Google Scholar 

  • Su, H., van Bruggen, A. H. C., & Subbarao, K. V. (1998). Spore release of Bremia lactucae on lettuce is affected by timing of light initiation and decrease in relative humidity. Phytopathology, 90, 67–71.

    Article  Google Scholar 

  • Su, H., van Bruggen, A. H. C., Subbarao, K. V., & Scherm, H. (2004). Sporulation of Bremia lactucae affected by temperature, relative humidity, and wind in controlled conditions. Phytopathology, 94, 396–401.

    Article  CAS  PubMed  Google Scholar 

  • Sukanya, S. L., & Spring, O. (2013). Influence of temperature and ultra-violet light on viability and infectivity of Peronospora tabacina sporangia. Crop Protection, 51, 14–18.

    Article  Google Scholar 

  • Sun, S. L., Lian, S., Feng, S. L., Dong, X. L., Wang, C. X., Li, B. H., & Liang, W. X. (2017). Effects of Temperature and Moisture on Sporulation and Infection by Pseudoperonospora cubensis. Plant Disease, 101(4), 562–567.

  • Sutton, J. C., & Hildebrand, P. D. (1985). Environmental water in relation to Peronospora destructor and related pathogens. Canadian Journal of Plant Pathology, 7, 323–330.

    Article  Google Scholar 

  • Tan, K. K., & Epton, H. A. S. (1974). Further studies on light and sporulation in Botrytis cinerea. Transactions of the British Mycological Society, 62, 105–112.

    Article  Google Scholar 

  • Thines, M., Telle, S., Ploch, S., & Runge, F. (2009). Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycological Research, 113, 532–540.

    Article  PubMed  Google Scholar 

  • Tumwine, J., Frinking, H. D., & Jeger, M. J. (2002). Integrating cultural control methods for tomato late blight (Phytophthora infestans) in Uganda. Annals of Applied Biology, 141, 225–236.

    Article  Google Scholar 

  • Van der Heyden, H., Dutilleul, P., Charron, J. B., Bilodeau, G. J., & Carisse, O. (2021). Monitoring airborne inoculum for improved plant disease management. A review. Agronomy for Sustainable Development, 41, 40.

    Article  Google Scholar 

  • Wargent, J. J., Taylor, A., & Paul, N. D. (2006). UV supplementation for growth regulation and disease control. Acta Horticulturae, 711, 333–338.

    Article  Google Scholar 

  • Wedgwood, E. F. (2016). Aerial oomycetes: Assessing management and control options needed in UK edible and ornamental crops. AHDB CP 157 Final report. Available at: https://ahdb.org.uk/research. Accessed 4 Aug 2020.

  • Wedgwood, E. F. (2017). Edible crops: recent developments in the management of downy mildew, white blister and aerially spread Phytophthora diseases. AHDB Factsheet, 18/16.

  • Wright, K. (2014). Outdoor herbs: epidemiology and control of downy mildew in sage, parsley, mint and basil under protection. HDC Final Report for project FV 390.

  • Wu, B. M., Subbarao, K. V., & van Bruggen, A. H. C. (2000). Factors affecting the survival of Bremia lactucae sporangia deposited on lettuce leaves. Phytopathology, 90, 827–833.

    Article  CAS  PubMed  Google Scholar 

  • Yáñez López, R., Quijano Carranza, J. Á., Bucio Villalobos, C. M., Hernández Zul, M. I., Arreguín Centeno, J. H., & Narro Sánchez, J. (2012). Effect of temperature and relative humidity on the germination of Bremia lactucae Regel sporangia. Revista Mexicana de Ciencias Agrícolas 3 (5) Mexico City: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), 2012, 1039–1045.

  • Yang, X. T., Li, M., Zhao, C. J., Zhang, Z., & Hou, Y. L. (2007). Early warning model for cucumber downy mildew in unheated greenhouses. New Zealand Journal of Agricultural Research, 50(5), 1261–1268.

    Article  Google Scholar 

  • Zhao, C. J., Li, M., Yang, X. T., Sun, C. H., Qian, J. P., & Ji, Z. T. (2011). A data-driven model simulating primary infection probabilities of cucumber downy mildew for use in early warning systems in solar greenhouses. Computers and Electronics in Agriculture, 76, 306–315.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank AHDB Horticulture for funding this work and Dawn Arnold and Kim Parker for comments on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Beacham.

Ethics declarations

The authors declare no competing interests. A version of this text was published as AHDB Horticulture CP184 Final Report.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beacham, A.M., James, K.L., Randall, N.P. et al. Challenges and recommendations for the development of cultural control of aerial oomycete-associated diseases in protected horticulture. Eur J Plant Pathol 167, 207–219 (2023). https://doi.org/10.1007/s10658-023-02695-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-023-02695-y

Keywords

Navigation