Skip to main content
Log in

Effect of antagonistic bacteria associated with canola on disease suppression

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Antagon istic bacteria can be used as a safe and nature-friendly method of disease control. Bacteria associated with canola plants from western Iranian fields were isolated and their inhibitory effect against the blackleg pathogen of canola investigated in vitro. 8 isolates were selected based on antagonistic test results (dual cultures) and in vitro study of biocontrol mechanism. Next, their inhibitory ability against blackleg disease in the greenhouse was investigated. Selected isolates showed high inhibitory ability against Leptosphaeria maculans in vitro, suggesting the susceptibility of the blackleg pathogen to antifungal compounds produced by the selected strains. The selected isolates were able to produce antifungal antibiotics. Antifungal volatile compounds were observed in six selected isolates. All eight selected isolates generated hydrolytic enzymes such as cellulase, lipase, and amylase. Moreover, six isolates were able to produce protease. Isolate 642 (confirmed as Pseudomonas sp.) significantly inhibited blackleg disease under greenhouse conditions, suggesting its suitability for further investigation in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are available and present either in the publication or in the indicated databases. Further inquiries for additional information can be directed to the corresponding authors.

References

  • Abuamsha, R., Salman, M., & Ehlers, R. (2011). Effect of seed priming with Serratia plymuthica and Pseudomonas chlororaphis to control Leptosphaeria maculans in different oilseed rape cultivars. European Journal of Plant Pathology, 130, 287–295. https://doi.org/10.1007/s10658-011-9753-y

    Article  Google Scholar 

  • Adesemoye, A., Obini, M., & Ugoji, E. O. (2008). Comparison of plant growth-promotion with pseudomonas aeruginosa and Bacillus subtilis in three vegetable. Brazilian Journal of Microbiology, 39, 423–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmadzadeh, M., & Sharifi Tehrani, A. (2009). Evaluation of fluorescent pseudomonads for plant growth promotion, antifungal activity against Rhizoctonia solani on common bean, and bio-control potential. Biological Control, 48, 101–107. https://doi.org/10.1016/j.biocontrol.2008.10.012

    Article  Google Scholar 

  • Alabouvette, C., Brunin, B., & Louvet, J. (1974). Studies on rape disease caused by Leptosphaeria maculans. Pycnidiospore infectivity and varietal susceptibility. Annual Review of Phytopathology, 6, 265–280.

    Google Scholar 

  • Alstrom, S., & Burns, R. G. (1989). Cyanid production by rhizobacteria as a possible mechanism of plant growth inhibition. Biology and Fertility of Soils, 7, 232–238. https://doi.org/10.1007/BF00709654

    Article  Google Scholar 

  • Bahadur, A., Singh, J., Singh, K., Upadhyay, R. M. (2006) Effect of organic amendments and bio-fertilizers on growth, yield and quality attributes of Chinese cabbage (Brassica pekinensis Olsson). Indian Journal of Agricultural Research 76: 596–598. https://doi.org/10.18801/jstei.030216.26

  • Baishya, K., & Sarma, H. P. (2014). Effect of agrochemicals application on accumulation of heavy metals on soil of different land uses with respect to its nutrient status. Journal of Environmental Science, Toxicology and Food Technology, 8, 46–54.

    Article  Google Scholar 

  • Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H. P., Clement, C., Ouhdouch, Y., & Van Wezel, G. P. (2016). Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiology and Molecular Biology Reviews, 80, 1–43.

    Article  PubMed  Google Scholar 

  • Beatty, P. H., & Jensen, S. E. (2002). Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against of blackleg disease of canola. Canadian Journal of Microbiology, 48, 159–169. https://doi.org/10.1139/w02-002

    Article  CAS  PubMed  Google Scholar 

  • Budi, S. W., Tuinen, D. V., Arnould, C., Dumas-Gaudot, E., & Gianinazzi-Pearson, & V., Gianinazzi, S. (2000). Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Applied Soil Ecology, 15, 191–199. https://doi.org/10.1016/S0929-1393(00)00095-0

    Article  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principle, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho, B. G., Licastro, D., Mendonca-Previato, L., Camara, M., & Venturi, V. (2015). Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Molecular Plant-Microbe Interactions, 28, 10–21. https://doi.org/10.1094/MPMI-07-14-0225-R

    Article  CAS  PubMed  Google Scholar 

  • Di Benedetto, N. A., Corbo, M. R., Campaniello, D., Cataldi, M. P., Bevilacqua, A., Sinigaglia, M., & Flagella, Z. (2017). The role of Plant Growth Promoting Bacteria in improving nitrogen use efficiency for sustainable crop production: A focus on wheat. AIMS Microbiology, 3, 413–434. https://doi.org/10.3934/microbiol.2017.3.413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimkic, I., Zivkovic, S., Beric, T., Ivanovic, Z., Gavrilovic, V., & Stankovic, & S., Fira, D. (2013). Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi. Biological Control, 65, 312–321. https://doi.org/10.1016/j.biocontrol.2013.03.012

    Article  Google Scholar 

  • Downer, A. J., Menge, J. A., & Pond, E. (2001). Effects of cellulytic enzymes on Phytophthora cinnamomi. Phytopathology, 91, 839–846. https://doi.org/10.1094/PHYTO.2001.91.9.839

    Article  CAS  PubMed  Google Scholar 

  • Dunne, C., Crowley, J. J., Moenne-Loccoz, Y., Dowling, D. N., De Bruijn, F. J., & Ogara, F. (1997). Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology, 143, 3921–3931. https://doi.org/10.1099/00221287-143-12-3921

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed, W., Akhkha1, A., El-Naggar, M. Y., & Elbadry, M. (2014) In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Frontiers in Microbiology, 5: 651. https://doi.org/10.3389/fmicb.2014.00651

  • Eppo, 2011. Curtobacterium flaccumfaciens pv. flaccumfaciens. Bulletin OEPP⁄EPPO. 41: 320–328

  • Goswami, D., Thakker, J. N., Dhandhukia, P. C., & Tejada Moral, M. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food and Agriculture, 2, 1127500. https://doi.org/10.1080/23311932.2015.1127500

    Article  CAS  Google Scholar 

  • Hammami, I., Hsouna, A. B., Hamdi, N., Gdoura, R., & Triki, M. A. (2013). Isolation and characterization of rhizosphere bacteria for the biocontrol of the damping-off disease of tomatoes in Tunisia. Comptes Rendus Biologies, 336, 557–564. https://doi.org/10.1016/j.crvi.2013.10.006

    Article  PubMed  Google Scholar 

  • Hammoudi, O. (2007) Einfluss mikrobieller Antagonisten aufden Befall mit Phoma lingam und Verticillium dahliae var. longisporum an Raps (Brassica napus L. var. napus). Dissertation, Christian-Albrechts-Universität zu Kiel.

  • Islam, M. T., & Von Tiedemann, A. (2011). 2, 4-Diacetylphloroglucinol suppresses zoosporogenesis and impairs motility of Peronosporomycete zoospores. World Journal of Microbiology and Biotechnology, 27, 2071–2079. https://doi.org/10.1007/s11274-011-0669-7

    Article  CAS  PubMed  Google Scholar 

  • Islam, S., Akanda, A. M., Prova, A., Islam, M. d., & Hossain, M. d. M. (2016) Isolation and identification of plant growth promothing Rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology, 6: article 1360. https://doi.org/10.3389/fmicb.2015.01360

  • Jaaffar, A. K. M., Parejko, J. A., Paulitz, T. C., Weller, D. M., & Thomashow, L. S. (2017). Sensitivity of Rhizoctonia isolates tophenazine-1-carboxylic acid and biological control by phenazine-producing Pseudomonas spp. Phytopathology, 107, 692–703. https://doi.org/10.1094/PHYTO-07-16-0257-R

    Article  CAS  PubMed  Google Scholar 

  • Jain, R., & Pandey, A. (2016). A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Microbiological Research, 190, 63–71. https://doi.org/10.1016/j.micres.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  • Jamalzadeh, A., Darvishnia, M., Khodakaramian, G., Bazgir, E. & Zafari, D. (2021). Genetic diversity and plant growth-promoting activity of the dominant bacteria from canola plants in Western Iran. Egyptian Journal of Biological Pest Control, 31, Paper number: 98. https://doi.org/10.1186/s41938-021-00442-1

  • Jayamohan, N. S., Patil, S. V., & Kumudini, B. S. (2020). Seed priming with Pseudomonas putida isolated from rhizosphere triggers innate resistance against Fusarium wilt in tomato through pathogenesis-related protein activation and phenyl propanoid pathway. Pedosphere, 30, 651–660. https://doi.org/10.1016/S1002-0160(20)60027-3

    Article  CAS  Google Scholar 

  • Karmegham, N., Vellasamy, S., Natesan, B., Sharma, M. P., Al Farraj, D. A., & Elshikh, M. (2020). Characterization of antifungal metabolite phenazine from rice rhizosphere fluorescent pseudomonads (FPs) and their effect on sheath blight of rice. Saudi Journal of Biological SciEnce, 27, 3313–3326. https://doi.org/10.1016/j.sjbs.2020.10.007

    Article  CAS  Google Scholar 

  • Khan, A., Williams, K. L., & Nevalainen, H. K. M. (2004). Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biological Control, 31, 346–352. https://doi.org/10.1016/j.biocontrol.2004.07.011

    Article  CAS  Google Scholar 

  • Knudsen, G. R., & Dandurand, L. M. C. (2014) Ecological complexity and the success of fungal biological control agents. Advances in Agriculture Article ID 542703, 11 pages. https://doi.org/10.1155/2014/542703

  • Kraus, J., & Loper, J. E. (1990) Biocontrol of Pythium damping-off of cucumber by Pseudomonas fluorescens Pf-5: mechanistic studies in: Plant Growth Promoting Rhizobacteria. In Keel C, Koller B, Defago G, editors. The Second International Workshop on Plant Growth Promoting Rhizobacteria, Switzerland, P. 174-177

  • Kumar, R. S., Ayyadurai, N., Pandiaraja, P., Reddy, A. V., Venkateswarlu, Y., Prakash, O., & Sakthivel, N. (2005). Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity biofertilizing traits. Journal of Applied Microbiology, 98, 144–155. https://doi.org/10.1111/j.1365-2672.2004.02435.x

    Article  CAS  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870–1874. https://doi.org/10.1093/molbev/msw054.Epub2016Mar22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahlali, R., Aksissou, W., Lyousfi, N., Ezrari, S., Blenzar, A., Tahiri, A., Ennahli, S., Hrustic, J., MacLean, D., & Amiri, S. (2020). Biocontrol activity and putative mechanism of Bacillus amyloliquefaciens (SF14 and SP10), Alcaligenesfaecalis ACBC1, and Pantoea agglomerans ACBP1 against brown rot disease of fruit. Microbial Pathogenesis, 139, 103914. https://doi.org/10.1016/j.micpath.2019.103914

    Article  CAS  PubMed  Google Scholar 

  • Lata, S. A. (2003) Characterization of plant growth promoting rhizobacteria. In: Saxena AK, Editor. Training manual on biofertilizer technology P, 24–25

  • Liu, Y., Yao, S., Deng, L., Ming, J., & Zeng, K. (2019). Different mechanisms of action of isolated epiphytic yeasts against Penicillium digitatum and Penicillium italicum on citrus fruit. Postharvest Biology and Technology, 152, 100–110. https://doi.org/10.1016/j.postharvbio.2019.03.002

    Article  Google Scholar 

  • McGee, D. C. (1977) Blackleg (Leptosphaeria maculans) of rapeseed in Victoria: sources of infection and relationships between inoculum, environmental factors and disease severity. Australian Journal of Agricultural Research, 28: 53-65

  • Mohammed, A. F., Oloyede, A. R., & Odeseye, A. O. (2020). Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Archives of Phytopathology and Plant Protection, 53, 1–6. https://doi.org/10.1080/03235408.2020.1715756

    Article  CAS  Google Scholar 

  • Moller, E. M., Bahnweg, G., Sandermann, H., & Geiger, H. H. (1992). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies and infected plant tissues. Nucleic Acids Research, 20, 6115–6116. https://doi.org/10.1093/nar/20.22.6115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller, H., Westendorf, C., Leitner, E., Chernin, L., Riedel, K., Schmidt, S., Eberl, L., & Berg, G. (2009). Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiology Ecology, 67, 468–478. https://doi.org/10.1111/j.1574-6941.2008.00635.x

    Article  CAS  PubMed  Google Scholar 

  • Narayanasamy, P. (2013) Concepts and aims of biological management. In Biological management of diseases of crops. (Eds, Narayanasam P, editor. Dordrecht, New York: Heidelberg, Springer 1–7.

  • Nezaret, S., & Gholami, A. (2009). Screening plant growth promoting rhizobacteria for improving seed germination, seedling growth and yield of maize. Pakistan Journal of Biological Sciences, 12, 26–32. https://doi.org/10.3923/pjbs.2009.26.32

    Article  Google Scholar 

  • Ossowicki, A., Jafra, S., & Garbeva, P. (2017). The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482. PLoS ONE, 12, e0174362. https://doi.org/10.1371/journal.pone.0174362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panjehkeh, N., Saberyan, A., Afshari Azad, H., & Salari, M. (2011). Biological Control of Phoma Lingam, the causal agent of rapeseed blackleg by Trichoderma and Bacillus subtilis isolates. Iranian Journal of Plant Pathology, 47, 3–5.

    Google Scholar 

  • Priyanka, Agrawal, T., Kotasthane, A. S., Kosharia, A., Kushwah, A., Zaidi, N. W., & Singh, U. S. (2017) Crop specific plant growth promoting effects of ACC d enzyme and siderophore producing and cynogenic fluorescent Pseudomonas. 3 Biotech 7: 27. https://doi.org/10.1007/s13205-017-0602-3

  • Rahmanpour, S., & Amiri-Oghan, H. (2008) Identification and management of Canola diseases. Journal of agricultural education p. 182

  • Ramarathnam, R., & Fernando, W. G. D. (2006). Preliminary phenotypic and molecular screening for potential bacterial biocontrol agents of Leptosphaeria maculans, the blackleg pathogen of canola. Biocontrol Science and Technology, 16, 567–582. https://doi.org/10.1080/09583150500532790

    Article  Google Scholar 

  • Riah, W., Laval, K., Laroche-Ajzenberg, E., Mougin, C., Latour, X., & Trinsoutrot-Gattin, I. (2014). Effects of pesticides on soil enzymes: A review. Environmental Chemistry Letters, 12, 257–273. https://doi.org/10.1007/s10311-014-0458-2

    Article  CAS  Google Scholar 

  • Richter, B. S., Ivors, K., Shi, W., & Benson, D. M. (2011). Cellulase activity as a mechanism for suppression of Phytophthora root rot in mulches. Phytopathology, 101, 223–230. https://doi.org/10.1094/PHYTO-04-10-0125

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Solis, D., Zetter-Salmón, E., Contreras-Pérez, M., Rocha-Granados, M. C., Macias-Rodriguez, L., & Santoyo, G. (2018). Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatalysis and Agricultural Biotechnology, 13, 46–52. https://doi.org/10.1016/j.bcab.2017.11.007

    Article  Google Scholar 

  • Ruiu, L. (2020). Plant-growth-promoting bacteria (PGPB) against insects and other agricultural pests. Agronomy, 10, 861. https://doi.org/10.3390/agronomy10060861

    Article  CAS  Google Scholar 

  • Saber, F. M. A., Abdelhafez, A. A., Hassan, E. A., & Ramadan, E. M. (2015). Characterization of fluorescent pseudomonads isolates and their efficiency on the growth promotion of tomato plant. Annals of Agricultural Sciences, 60, 131–140. https://doi.org/10.1016/j.aoas.2015.04.007

    Article  Google Scholar 

  • Saini, R., Dudeja, S. S., Giri, R., & Kumar, V. (2015). Isolation, characterization, and Sevaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern. Journal of Basic Microbiology, 55, 74–81. https://doi.org/10.1002/jobm.201300173

    Article  CAS  PubMed  Google Scholar 

  • Sallam, N. A., Riad, S. N., Mohamed, M. S., & El-eslam, A. S. (2013). Formulations of Bacillus spp. and Pseudomonas fluorescens for biocontrol of cantaloupe root rot caused by Fusarium solani. Journal of Plant Protection Research, 53, 295–300. https://doi.org/10.2478/jppr-2013-0044

    Article  Google Scholar 

  • Samuel, S., & Muthukkaruppan, S. M. (2011). Characterization of plant growth promoting rhizobacteria and fungi associated with rice, mangrove and effluent contaminated soil. Current Botany, 2, 22–25.

    CAS  Google Scholar 

  • Schaad, N. W. (1988) Laboratory Guide for Identification of Plant Pathogenic Bacteria. The American Phytopathology Society; St. Paul: p. 158.

  • Schulz, B., Wanke, U., Draeger, S., & Aust, H. J. (1993). Endophytes from herbaceous plants and shrubs: Effectiveness of surface sterilization methods. Mycological Research, 97, 1447–1450.

    Article  Google Scholar 

  • Sethi, S. K., & Mukherjee, A. K. (2018) Screening of biocontrol potential of indigenous Bacillus spp. isolated from rice rhizosphere against, R. solani, S. oryzae, S. rolfsii and response towards growth of rice. Journal of Pure and Applied Microbiology 12: 41–53. https://doi.org/10.22207/JPAM.12.1.06

  • Shanmugaiah, V., Mathivanan, N., Balasubramanian, N., & Manoharan, P. T. (2008). Optimization of cultural condition for production of chitinase by Bacillus laterosporous MML2270 isolated from rice rhizosphere soil. African Journal of Biotechnology, 7, 2562–2568.

    CAS  Google Scholar 

  • Shanmugam, V., & Kanoujia, N. (2011). Biological management of vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycospersici by plant growth-promoting rhizobacterial mixture. Biological Control, 57, 85–93. https://doi.org/10.1016/j.biocontrol.2011.02.001

    Article  Google Scholar 

  • Sindhu, S. S., & Dadarwal, K. R. (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiological Research 156: 353-358

  • Spadaro, D., & Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science and Technology, 47, 39–49. https://doi.org/10.1016/j.tifs.2015.11.003

    Article  CAS  Google Scholar 

  • Starzycki, M., & Starzycka, E. (1993) The mycelium test for evaluation of resistance of winter rapeseed seedling at the stage to Phoma lingam. Nowe Posepow Nauk Rolni –Czych 40: 127–131

  • Strano, C. P., Bella, P., Licciardello, G., Caruso, A., & Catara, V. (2017). Role of secondary metabolites in the biocontrol activity of Pseudomonas corrugata and Pseudomonas Mediterranean. European Journal of Plant PatholOgy, 149, 103–115. https://doi.org/10.1007/978-981-10-5514-0-6

    Article  CAS  Google Scholar 

  • Suprapta, D. N. (2012). Potential of microbial antagonists as biocontrol agents against plant fungal pathogens. Journal of the International Society for Southeast Asian Agricultural Sciences, 18, 1–8.

    Google Scholar 

  • Toffano, L., Fialho, M. B., & Pascholati, S. F. (2017). Potential of fumigation of orange fruits with volatile organic compounds produced by Saccharomyces cerevisiae to control citrus black spot disease at postharvest. Biological Control, 108, 77–82. https://doi.org/10.1016/j.biocontrol.2017.02.009

    Article  CAS  Google Scholar 

  • Vaishnavi, S., Thamaraiselvi, C., & Vasanthy, M. (2019). Efficiency of indigenous microorganisms in bioremediation of tannery effluent. Waste Water Recycling and Management (pp. 151–168). Springer.

    Chapter  Google Scholar 

  • Varatharaju, G., Nithya, K., Suresh, P., Rekha, M., Balasubramanian, N., Gomathinayagam, S., Manoharan, P.T., & Shanmugaiah, V. (2020) Biocontrol properties and functional characterization of rice rhizobacterium Pseudomonas sp. VsMKU4036. Journal of Pure and Applied Microbiology 14: 1545–1556. https://doi.org/10.22207/JPAM.14.2.53

  • Vincent, J. M. (1947). Distortion of fungal hyphae in the presence of certain inhibitors. Nature, 159, 850. https://doi.org/10.1038/159850b0

    Article  CAS  PubMed  Google Scholar 

  • Vurukonda, S. S. K. P., Giovanardi, D., & Stefani, E. (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. International Journal of Molecular Sciences 19: 952. https://doi.org/10.3390/ijms19040952

  • Wallace, R. L., Hirkala, D. L., & Nelson, L. M. (2017). Mechanisms of action of three isolates of Pseudomonas fluorescens active against postharvest grey mold decay of apple during commercial storage. Biological Control, 117, 13–20. https://doi.org/10.1016/j.biocontrol.2017.08.019

    Article  CAS  Google Scholar 

  • Wang, J., Li, R., Zhang, H., Wei, G., & Zhefei, L. (2020a). Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiology, 20, 38. https://doi.org/10.1186/s12866-020-1708-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Zhong, T., Chen, K., Du, M., Chen, G., Chen, X., Wang, K., Zalan, Z., Takacs, K., & Kan, J. (2020b). Antifungal activity of volatile organic compounds produced by Pseudomonas fluorescens ZX and potential biocontrol of blue mold decay on postharvest citrus. Food Control, 120, 107499. https://doi.org/10.1016/j.foodcont.2020.107499

    Article  CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In P. C. R. Protocols (Ed.), Innis MA, Gelfand DH, Sninsky JJ, White TJ (pp. 315–332). Academic Press.

    Google Scholar 

  • Yang, C., Guo, W., Li, G., Gao, F., Lin, S., & Zhang, T. (2008). QTLs mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plant Science, 174, 290–298. https://doi.org/10.1016/j.plantsci.2007.11.016

    Article  CAS  Google Scholar 

  • Zarafshani, K., Ghasemi, Sh., Houshyar, E., Ghanbari, R., Van Passel, S., & Azadi, H. (2017). Canola adoption enhancement in western Iran. Journal of Agricultural Science and Technology, 19, 47–58.

    Google Scholar 

  • Zhang, Q. Z., Kong, X. W., Li, S. Y., Chen, Xi., & J., & Chen, X. J.,. (2020). Antibiotics of Pseudomonas protegenes FD6 ara essential for biocontrol activity. Australasian Plant Pathology, 49, 307–317. https://doi.org/10.1007/s13313-020-00696-7

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, T., Liu, Y., Li, X., Zhang, C., Feng, Z., Peng, X., Li, Z., Qin, S., & Xing, K. (2019). Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potato. Journal of Agricultural and Food Chemistry, 67, 3702–3710. https://doi.org/10.1021/acs.jafc.9b00289

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y., Xue, Q. Y., Xu, L. L., Xu, Q., Lu, S., Gu, C., & Guo, J. H. (2011). A screening strategy of fungal biocontrol agents towards Verticillium wilt of cotton. Biological Control, 56(3), 209–216. https://doi.org/10.1016/j.biocontrol.2010.11.010

    Article  Google Scholar 

  • Zhou, G., Shang, L., Yu, C., Yin, L., Xu, D., & Yi, J. (2010). Detection of Leptosphaeria maculans and L. biglobosa in oilseed rape samples imported from Australia. Acta Phytophylacica Sinica, 37, 289–294.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Lorestan University for financial support and from the Bu-Ali Sina University for supporting experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Darvishnia.

Ethics declarations

Ethical statement

No studies were conducted involving human and/ or animal participants.

Ethics approval

All authors contributed and declare that the manuscript was not submitted or previously published.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamalzadeh, A., Darvishnia, M., Khodakaramian, G. et al. Effect of antagonistic bacteria associated with canola on disease suppression. Eur J Plant Pathol 165, 649–663 (2023). https://doi.org/10.1007/s10658-022-02633-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-022-02633-4

Keyword

Navigation