Skip to main content
Log in

Combining melon varieties with chemical fungicides for integrated powdery mildew control in Tunisia

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Powdery mildew is one of the most important diseases that causes significant economic losses in melon. Chemical fungicides and tolerant melon varieties, which may reduce pathogen severity and encourage positive plant responses, are viable techniques for controlling this disease. The study objectives were to investigate the effectiveness of contact fungicides, systemic fungicides and a combination of both in four commercial fields at various sampling times [30, 90 and 120 days after the first fungicide application (DAFA)]. Both fungicide mixture azoxystrobin + chlorothalonil and fungicide thiophanate-methyl reduced the disease index of powdery mildew on melon varieties compared to the untreated control (disease index 1.70–2.13 and 0.83–1.75, respectively at 120 DAFA), reduced the disease severity (24.79–31.5% and 19.06–21.88%, respectively at 120 DAFA) and the percentage of leaf area covered by powdery mildew (27–43.75% and 8.25–39%, respectively at 120 DAFA). Furthermore, melon plants treated with azoxystrobin + chlorothalonil showed a larger yield increase (63.31–71.40%), polar (15.43–17.59 cm) and equatorial (24.71–29.61 cm) diameter, yield (2.23–3.18 fruits number/plant; 27.67–52.22 t/ha) and mean weight (2411.25–3289.5 g). Azoxystrobin + chlorothalonil and thiophanate-methyl not only reduced the disease index and disease severity index, but also promoted a yield increase of all melon varieties. More attention should be given to the effectiveness of chemical fungicide control in view of expected climate changes. But fungicides continuous application following a fixed schedule is unsustainable and could lead to high resistance development in PM fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data and materials are available.

References

  • Abo Ogiela, H. M., & El-Shoraky, F. S. (2020). Efficacy of some chemical structure of pesticides on yield, fruit quality and infection with some diseases of "Anna" apple trees. Journal of Plant Production, 11, 369-376. https://doi.org/10.21608/jpp.2020.95640.

  • Aly, A. A., Amal, A., Mansour, M. T. M., Alghuthaymi, M., & Abd-Elsalam, K. (2021). Effect of cultivar on the efficiency of fungicides in controlling powdery mildew of flax and relationship of agronomic and technological traits to disease severity: Fungicides for controlling powdery mildew of flax. Journal of Microbiology, Biotechnology and Food Sciences, 10, e2152. https://doi.org/10.15414/jmbfs.2152.

  • Anand, T., Chandrasekaran, A., Kuttalam, S., Raguchander, T., Prakasam, V., & Samiyappan, R. (2007). Association of some plant defense enzyme activities with systemic resistance to early leaf blight and leaf spot induced in tomato plants by azoxystrobin and Pseudomonas fluorescens. Journal of Plant Interactions, 2, 233–244. https://doi.org/10.1080/17429140701708985

    Article  CAS  Google Scholar 

  • Anand, T., Chandrasekaran, A., Kuttalam, S. P., Senthilraja, G., Raguchander, T., & Samiyappan, R. (2008). Effectiveness of azoxystrobin in the control of Erysiphe cichoracearum and Pseudoperonospora cubensis on cucumber. Journal of Plant Protection Research, 48, 147–159. https://doi.org/10.2478/v10045-008-0018-5

    Article  CAS  Google Scholar 

  • Anesiadis, T., Karaoglanidis, G. S., & Tzavella-Klonari, K. (2003). Protective, curative and eradicant activity of the strobilurin fungicide azoxystrobin against Cercospora beticola and Erysiphe betae. Journal of Phytopathology, 151, 647–651. https://doi.org/10.1046/j.1439-0434.2003.00780.x

    Article  CAS  Google Scholar 

  • Baiswar, P., Ngachan, S. V., Rymbai, H., & Chandra, S. (2015). Erysiphe quercicola, a powdery mildew fungus on Khasi mandarin in North East India. Australasian Plant Disease Notes, 10, 30. https://doi.org/10.1007/s13314-015-0180-3

    Article  Google Scholar 

  • Bhat, J. A., Rashid, R., Dar, W. A., & Bhat, R. A. (2018). Efficacy of different fungicides for the management of downy mildew of cucumber grown under low plastic tunnel. International Journal of Pure & Applied Bioscience, 6, 884–890. https://doi.org/10.18782/2320-7051.6010

    Article  Google Scholar 

  • Camele, I., Campanelli, G., Ferrari, V., Viggiani, G., & Candido, V. (2009). Powdery mildew control and yield response of Inodorus melon. Italian Journal of Agronomy, 2, 19–26. https://doi.org/10.1590/0034-737x201966020008

    Article  Google Scholar 

  • Candido, V., Campanelli, G., Viggiani, G., Lazzeri, L., Ferrari, V., & Camele, I. (2014). Melon yield response to the control of powdery mildew by environmentally friendly substances. Scientia Horticulturae, 166, 70–77. https://doi.org/10.1016/j.scienta.2013.12.008

    Article  Google Scholar 

  • Casey Barickman, T., Horgan, T. E., & Wilson, J. C. (2017). Efficacy of fungicide applications and powdery mildew resistance in three pumpkin cultivars. Crop Protection, 101, 90–94. https://doi.org/10.1016/j.cropro.2017.07.025

    Article  CAS  Google Scholar 

  • Cohen, R., Burger, Y., & Katzir, N. (2004). Monitoring physiological races of Podosphaera xanthii (syn. Sphaerotheca fuliginea), the causal agent of powdery mildew in cucurbits: Factors affecting race identification and the importance for research and commerce. Phytoparasitica, 32, 174–183. https://doi.org/10.1007/BF02979784

    Article  Google Scholar 

  • El-Mougy, N. S., Abdel-Kader, M. M., & Lashin, S. M. (2014). Protective foliar approaches against downy and powdery mildews of cantaloupe under plastic houses conditions. International Journal of Engineering and Innovative Technology, 3, 324–329.

    Google Scholar 

  • El-Wahab, A., Gehad, M. M., & Ismail, M. M. (2016). Induction of systemic resistance in cucumber plants against powdery mildew under field conditions. Zagazig Journal of Agricultural Research, 43, 127-139. https://doi.org/10.21608/zjar.2016.101574.

  • Fawe, A., Abou-Zaid, M., Menzies, J. G., Jeblick, W., & Be’langer, R. R. (1998). Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology Journal, 88, 396–401. https://doi.org/10.1094/PHYTO.1998.88.5.396.

  • Fondevilla, S., & Rubiales, D. (2012). Powdery mildew control in pea. Agronomy for Sustainable Development, 32, 401–409. https://doi.org/10.1007/s13593-011-0033-1

    Article  CAS  Google Scholar 

  • Horsfield, A., Wicks, T., Davies, K., Wilson, D., & Paton, S. (2010). Effect of fungicide use strategies on the control of early blight (Alternaria solani) and potato yield. Australasian Plant Pathology, 39, 368–375. https://doi.org/10.1071/AP09090

    Article  CAS  Google Scholar 

  • Howlader, J., Hong, Y., Natarajan, S., Sumi, K. R., Hoy-Taek, K., Jong-In, P., & Ill-Sup, N. (2020). Development of powdery mildew race 5-specific SNP markers in Cucumis melo L. using whole-genome resequencing. Horticulture, Environment, and Biotechnology, 61, 347–357. https://doi.org/10.1007/s13580-019-00217-6

    Article  CAS  Google Scholar 

  • Jacinto, J., Magalhães, T., Oliveira, P. B., Oliveira, C., Luz, F., Trindade C. S., & Valdiviesso, T. (2022). Corema album (L.) D. Don phenological growth stages according to extended BBCH scale. International Journal of Fruit Science, 22, 317–328.https://doi.org/10.1080/15538362.2022.2041149.

  • Jung, J., Park, G., Oh, J., Jin-Kee, J., Eun-Jo, S., Sang-Min, C., Gung Pyo, L., & Younghoon, P. (2020). Assessment of the current infraspecific classification scheme in melon (Cucumis melo L.) based on genome-wide single nucleotide polymorphisms. Horticulture, Environment, and Biotechnology, 61, 537–547. https://doi.org/10.1007/s13580-020-00230-0

    Article  CAS  Google Scholar 

  • Keinath, A. P., & DuBose, V. B. (2004). Evaluation of fungicides for prevention and management of powdery mildew on watermelon. Crop Protection, 23, 35–42. https://doi.org/10.1016/s0261-2194(03)00165-0

    Article  CAS  Google Scholar 

  • Keinath, A. P., & DuBose, V. B. (2012). Controlling powdery mildew on cucurbit rootstock seedlings in the greenhouse with fungicides and biofungicides. Crop Protection, 42, 338–344. https://doi.org/10.1016/j.cropro.2012.06.009

    Article  CAS  Google Scholar 

  • Konstantinidou-Doltsinis, S., & Schmit, A. (1998). Impact of treatment with plant extracts from Reynoutria sachalinensis (F. Schmidt) Nakai on intensity of powdery mildew severity and yield in cucumber under high disease pressure. Crop Protection, 17, 649–656. https://doi.org/10.1016/S0261-2194(98)00066-0

    Article  Google Scholar 

  • Lancashire, P. D., Bleiholder, H., Van Den Boom, T., Langelüddeke, P., Stauss, R., Weber, E., & Witzenberger, A. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology, 119, 561–601. https://doi.org/10.1111/j.1744-7348.1991.tb04895.x

    Article  Google Scholar 

  • Lebeda, A., Křístková, E., Sedláková, B., McCreight, J. D., & Coffey, M. D. (2016). Cucurbit powdery mildews: Methodology for objective determination and denomination of races. European Journal of Plant Pathology, 144, 399–410. https://doi.org/10.1007/s10658-015-0776-7

    Article  Google Scholar 

  • Maryam, Y., Romana, A., Nadeem, A., Zeshan, M. A., Safdar, A., & Ghani, M. U. (2020). Evaluation of fungicides and nutritional amendments against powdery mildew of pumpkin. Asian Journal of Agriculture and Biology, 8, 69-74. https://doi.org/10.35495/ajab.2019.01.038.

  • Matheron, M. E., & Porchas, M. (2008). Examination of fungicides for management of powdery mildew on cantaloupe in 2007. Vegetable report. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ).

  • Matheron, M. E., & Porchas, M. (2013). Efficacy of fungicides and rotational programs for management of powdery mildew on cantaloupe. Plant Disease, 97, 196–200. https://doi.org/10.1094/PDIS-04-12-0370-RE

    Article  Google Scholar 

  • Matrood, A. A. A., & Rhouma, A. (2021). Evaluating eco-friendly botanicals as alternatives to synthetic fungicides against the causal agent of early blight of Solanum melongena. Journal of Plant Diseases and Protection, 128, 1517–1530. https://doi.org/10.1007/s41348-021-00530-2

    Article  CAS  Google Scholar 

  • McCreight, J.D. (2006). Melon-powdery mildew interactions reveal variation in melon cultigens and Podosphaera xanthii races 1 and 2. Journal of the American Society for Horticultural Science, 131, 59-65. https://doi.org/10.21273/JASHS.131.1.59.

  • Naidu, Y., Meon, S., & Siddiqui, Y. (2012). In vitro and in vivo evaluation of microbial-enriched compost tea on the development of powdery mildew on melon. Biocontrol, 57, 827–836. https://doi.org/10.1007/s10526-012-9454-2

    Article  Google Scholar 

  • Nasir, M., Idress, M., Iqbal, B., Hussain, M., Mohy-ud-Din, G., & Ayub, M. (2017a). Comparative efficacy of bio control agent Bacillus subtilis and fungicides against powdery mildew of apple. Journal of Agricultural Research, 55, 75–84.

    Google Scholar 

  • Nasir, M., Iqbal, B., Idrees, M., Sajjad, M., Niaz, M. Z., Anwar, H., Shehzad, M. A., & Tariq, A. H. (2017b). Efficacy of some organic fungicides against anthracnose and powdery mildew of mango. Pakistan Journal of Agricultural Sciences, 54, 493-496. https://doi.org/10.21162/PAKJAS/17.1909.

  • Rhouma, A., Ben-Salem, I., M’hamdi, M., & Boughalleb-M’hamdi N. (2019). Relationship study among soils physicochemical properties and Monosporascus cannonballus ascospores densities for cucurbit fields in Tunisia. European Journal of Plant Pathology, 53, 65-78. https://doi.org/10.1007/s10658-018-1541-5.

  • Rhouma, A., Mougou, I., & Rhouma, H. (2020). Determining the pressures on and risks to the natural and human resources in the Chott Sidi Abdel Salam oasis, southeastern Tunisia. Euro-Mediterranean Journal for Environmental Integration, 5, 37. https://doi.org/10.1007/s41207-020-00176-w

    Article  Google Scholar 

  • Rhouma, A., Bedjaoui, H., Khrieba, M. I., & Mehaoua, M. S. (2021a). Technical document on powdery mildew of cucurbits. Journal of Global Agriculture and Ecology, 11, 1–6. https://www.ikprress.org/index.php/JOGAE/article/view/6558

  • Rhouma, A., Mougou, I., Bedjaoui, H., Rhouma, H., & Matrood, A. A. A. (2021b). Ecology in Chott Sidi Abdel Salam oasis, southeastern Tunisia: Cultivated vegetation, fungal diversity and livestock population. Journal of Coastal Conservation, 25, 52. https://doi.org/10.1007/s11852-021-00837-0

    Article  Google Scholar 

  • Rhouma, A., Khrieba, M. I., Salih, Y. A., Rhouma, H., & Bedjaoui, H. (2021c). Efficacy of fungicides for control of powdery mildew on grapevines in Chott Sidi Abdel Salam oasis, southeastern Tunisia. Journal of Oasis Agriculture and Sustainable Development, 3, 1-7. https://doi.org/10.56027/JOASD.072021.

  • Romdhani, M., & El Mahjoub, M. (1991). Lutte contre la jambe noire et les pourritures molles de la pomme de terre dues à Erwinia spp. en Tunisie. Mededelingen van de Faculteit landbouwwetenschappen Rijksuniversiteit, 56, 471–477. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6124691

  • Saharan, G. S., Mehta, N. K., & Meena, P. D. (2019). The disease: Powdery mildew disease of crucifers: Biology, ecology and disease management. Springer, Singapore. https://doi.org/10.1007/978-981-13-9853-7_2.

  • Swarbrick, P. J., Schulze-Lefert, P., & Scholes, J. D. (2006). Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell and Environment, 29, 1061–1076. https://doi.org/10.1111/j.1365-3040.2005.01472.x

    Article  CAS  Google Scholar 

  • Teng, P. S., & Bissonnette, H. L. (1985). Estimating potato yield responses from chemical control of early blight in Minnesota. American Journal of Potato Research, 62, 595–606. https://doi.org/10.1007/BF02854434

    Article  CAS  Google Scholar 

  • Vielba-Fernández, A., Polonio, Á., Ruiz-Jiménez, L., de Vicente, A., Pérez-García, A., & Fernández-Ortuño, D. (2020). Fungicide resistance in powdery mildew fungi. Microorganisms, 8, 1431–1465. https://doi.org/10.3390/microorganisms8091431

    Article  CAS  Google Scholar 

  • Wang, Y., Li, Y., He, P., Chen, J., Lamikanra, O., & Lu, J. (1995). Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis, 34, 159–164. https://doi.org/10.5073/vitis.1995.34.159-164

    Article  Google Scholar 

  • Xin, M., Wang, X., Peng, H., Yao, Y., Xie, C., Han, Y., Ni, Z., & Sun, Q. (2012). Transcriptome comparison of susceptible and resistant wheat in response to powdery mildew infection. Genomics, Proteomics and Bioinformatics, 10, 94–106. https://doi.org/10.1016/j.gpb.2012.05.002

    Article  CAS  Google Scholar 

  • Yang, H., & Luo, P. (2021). Changes in photosynthesis could provide important insight into the interaction between wheat and fungal pathogens. International Journal of Molecular Sciences, 22, 8865. https://doi.org/10.3390/ijms22168865

    Article  CAS  Google Scholar 

  • Yousaf, M., Anjum, R., Ahmed, N., Zeshan, M. A., Ali, S., & Ghani, M. U. (2020). Evaluation of fungicides and nutritional amendments against powdery mildew of pumpkin. Asian Journal of Agriculture and Biology, 8, 69-74. https://doi.org/10.35495/ajab.2019.01.038.

  • Zhang, H., Yang, Y., Wang, C., Liu, M., Li, H., Fu, Y., Wang, Y., Nie, Y., Liu, X., & Ji, W. (2014). Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC Genomics, 15, 898. https://doi.org/10.1186/1471-2164-15-898

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the review editor and the anonymous reviewers for their helpful comments and suggestions to improve the clarity of the research paper.

Funding

We did not receive financial support; we used our facilities available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhak Rhouma.

Ethics declarations

Human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.All authors have approved the manuscript for submission.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhouma, A., Mehaoua, M.S., Mougou, I. et al. Combining melon varieties with chemical fungicides for integrated powdery mildew control in Tunisia. Eur J Plant Pathol 165, 189–201 (2023). https://doi.org/10.1007/s10658-022-02599-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-022-02599-3

Keywords

Navigation