Skip to main content

Advertisement

Log in

Effects of arbuscular mycorrhizal fungi and salicylic acid on plant growth and the activity of antioxidative enzymes against wilt disease caused by Verticillium dahliae in pepper

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

This study was carried out to address the effects of arbuscular mycorrhizal fungi (AMF) and salicylic acid (SA) on plant growth and the activity of antioxidative enzymes against wilt disease caused by Verticillium dahliae Kleb. (Vd) in pepper. AMF (2.5 g) applications positively affected the development of pepper plants, although SA alone did not cause a significant effect. The combined application of SA and AMF significantly increased shoot length (7.5%) except for the other plant growth parameters. SA combined with AMF suppressed wilting by 42.5% and vascular discoloration by 69.4%. The gallic acid content in pepper plants varied depending on the applications and time after treatment; SA and AMF applications increased gallic acid content compared with the control. These treatments also increased activity of antioxidative enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) in pepper plants compared to the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abada, K. A. M., Attia, A. M. F., & Zyton, M. A. L. (2018). Management of pepper Verticillium wilt by combinations of inducer chemicals for plant resistance, bacterial bioagents and compost. Journal of Applied Biotechnology & Bioengineering, 5(2), 117–127. https://doi.org/10.15406/jabb.2018.05.00126

    Article  Google Scholar 

  • Adavi, Z., Tadayon, M. R., Razmjoo, J., & Ghaffari, H. (2020). Antioxidant enzyme responses in potato (Solanum tuberosum) cultivars colonized with arbuscular mycorrhizas. Potato Research, 63, 291–301. https://doi.org/10.1007/s11540-019-09440-1

    Article  CAS  Google Scholar 

  • Agarwal, S., Sairam, R. K., Srivastava, G. C., Tyagi, A., & Meena, R. C. (2005). Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Science, 169(3), 559–570. https://doi.org/10.1016/j.plantsci.2005.05.004

    Article  CAS  Google Scholar 

  • Akbar Mozafari, A., Dedejani, S., & Ghaderi, N. (2018). Positive responses of strawberry (Fragaria × ananassa Duch.) explants to salicylic and iron nanoparticle application under salinity conditions. Plant Cell, Tissue and Organ Culture (PCTOC), 134(2), 267–275. https://doi.org/10.1007/s11240-018-1420-y

    Article  CAS  Google Scholar 

  • Akkemik, E., Taser, P., Bayindir, A., Budak, H., & Ciftci, M. (2012). Purification and characterization of glutathione s-transferase from Turkey liver and inhibition effects of some metal ions on enzyme activity. Environmental Toxicology and Pharmacology, 34(3), 888–894. https://doi.org/10.1016/j.etap.2012.08.010

    Article  CAS  Google Scholar 

  • Akköprü, A., & Demir, S. (2005). Biological control of fusarium wilt in tomato caused by fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. Journal of Phytopathology, 153(9), 544–550. https://doi.org/10.1111/j.1439-0434.2005.01018.x

    Article  Google Scholar 

  • Ali, M. B., Hahn, E. J., & Paek, K. Y. (2007). Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules, 12(3), 607–621. https://doi.org/10.3390/12030607

    Article  CAS  Google Scholar 

  • Amirinejad, A. A., Sayyari, M., Ghanbari, F., & Kordi, S. (2017). Salicylic acid improves salinity-alkalinity tolerance in pepper (Capsicum annuum L.). Advances in Horticultural Science, 31(3), 157–163. https://doi.org/10.13128/ahs-21954

    Article  Google Scholar 

  • Ananieva, E. A., Christov, K. N., & Popova, L. P. (2004). Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. Journal of Plant Physiology, 161(3), 319–328. https://doi.org/10.1078/0176-1617-01022

    Article  CAS  Google Scholar 

  • Arıcı, Ş. E., & Yardımcı, N. (2001). Bitkilerde uyarılmış dayanıklılık. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 32(1), 83–86.

    Google Scholar 

  • Atakan, A. (2020). Karanfilde mikorizal fungus uygulamalarının Fusarium solgunluğu ve bitki gelişimi üzerine etkileri. Doktora Tezi, Isparta Uygulamalı Bilimler Üniversitesi, Isparta, Türkiye.

  • Azcón-Aguılar, C., & Barea, J. M. (1997). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens -an overview of the mechanisms involved. Mycorrhiza, 6(6), 457–464. https://doi.org/10.1007/s005720050147

    Article  Google Scholar 

  • Bamigboye, R. A., Adekunle, O. K., & Salami, A. O. (2020). Arbuscular mycorrhiza (AM) suppressed fungal disease incidence, severity and population of nematode on soybean (Glycine max) L. Ecologia, 10(2), 86–92. https://doi.org/10.3923/ecologia.2020.86.92

    Article  Google Scholar 

  • Bencherif, K., Djaballah, Z., Brahimi, F., Boutekrabt, A., Dalpè, Y., & Sahraoui, A. L. H. (2019). Arbuscular mycorrhizal fungi affect total phenolic content and antimicrobial activity of Tamarix gallica in natural semi-arid Algerian areas. South African Journal of Botany, 125, 39–45. https://doi.org/10.1016/j.sajb.2019.06.024

    Article  CAS  Google Scholar 

  • Bharti, A., & Garg, N. (2019). SA and AM symbiosis modulate antioxidant defense mechanisms and asada pathway in chickpea genotypes under salt stress. Ecotoxicology and Environmental Safety, 178, 66–78. https://doi.org/10.1016/j.ecoenv.2019.04.025

    Article  CAS  Google Scholar 

  • Biçici, M. (2011). Bitki hastalık etmenleri ile biyolojik mücadelenin başarısını arttırmada mikoriza’nın rolü. Türkiye Biyolojik Mücadele Dergisi, 2(2), 139–174.

    Google Scholar 

  • Bilgili, A., & Güldür, M. E. (2018). GAP bölgesinde biberlerde Fusarium oxysporum f. sp. vasinfectum kök çürüklüğü hastalığına arbüsküler mikorizal fungusların etkinliği. Harran Tarım ve Gıda Bilimleri Dergisi, 22(1), 88–108. https://doi.org/10.29050/harranziraat.325024

    Article  Google Scholar 

  • Boyno, G. (2019). Van'da domates alanlarından izole edilen Alternaria solani (Ell. ve G. Martin) Sor.'nin biyolojik mücadele olanaklarının belirlenmesi. Yüksek Lisans Tezi, Yüzüncü Yıl Üniversitesi, Van, Türkiye.

  • Çekiç, F. Ö., Ünyayar, S., & Ortaş, İ. (2012). Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long-term salt stress. Turkish Journal of Botany, 36(1), 63–72. https://doi.org/10.3906/bot-1008-32

    Article  CAS  Google Scholar 

  • Çelik, Y., Yarşi, G., & Özarslandan, A. (2019). Mikorizaların bitkilerde stres mekanizması üzerine etkileri. DÜSTAD Dünya Sağlık ve Tabiat Bilimleri Dergisi, 2019(2), 1–15.

    Google Scholar 

  • Chaparzadeh, N., & Hosseinzad-Behboud, E. (2015). Evidence for enhancement of salinity induced oxidative damages by salicylic acid in radish (Raphanus sativus L.). Journal of Plant Physiology & Breeding, 5(1), 23–33.

    Google Scholar 

  • Coşkun, F., Demir, S., & Alptekin, Y. (2021). The effectiveness of arbuscular mycorrhizal fungi and salicylic acid against Verticillium dahliae infecting pepper (Capsicum annuum L.). Applied Ecology and Environmental Research, 19(6), 5045–5057 https://doi.org/10.15666/aeer/1906_50455057

    Article  Google Scholar 

  • Declerck, S., Plenchette, C., & Strullu, D. G. (1995). Mycorrhizal dependency of banana (Musa acuminata, AAA group) cultivar. Plant and Soil, 176(1), 183–187. https://doi.org/10.1007/BF00017688

    Article  CAS  Google Scholar 

  • Demir, S., & Akköprü, A. (2007). Using of arbuscular mycorrhizal fungi (AMF) for biocontrol of soil-borne fungal plant pathogens. In S. B. Chincholkar & K. G. Mukerji (Eds.), Biological control of plant diseases (pp. 124–138). Haworth Press.

    Google Scholar 

  • Demir, S., Şensoy, S., Ocak, E., Tüfenkci, Ş., Durak, E. D., Erdinc, C., & Ünsal, H. (2015). Effects of arbuscular mycorrhizal fungus, humic acid, and whey on wilt disease caused by Verticillium dahliae Kleb. In three solanaceous crops. Turkish Journal of Agriculture and Forestry, 39(2), 300–309. https://doi.org/10.3906/tar-1403-39

    Article  CAS  Google Scholar 

  • Dos Santos, E. L., Da Silva, F. A., & Da Silva, F. S. B. (2017). Arbuscular mycorrhizal fungi increase the phenolic compounds concentration in the bark of the stem of Libidibia ferrea in field conditions. The Open Microbiology Journal, 11, 283–291. https://doi.org/10.2174/1874285801711010283

    Article  CAS  Google Scholar 

  • Duran, İ., & Özkaya, H. Ö. (2016). Kumluca ilçesi sera alanlarında toprak ve yaprak kökenli fungal hastalık etmenlerinin belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 111–122. https://doi.org/10.19113/sdufbed.78364

    Article  Google Scholar 

  • El-Khallal, S. M. (2007). Induction and modulation of resistance in tomato plants against fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid & salicylic acid), 1-changes in growth, some metabolic activities and endogenous hormones related to defence mechanism. Australian Journal of Basic and Applied Sciences, 1(4), 691–705.

    CAS  Google Scholar 

  • Erwin, D. C., Tsoti, S. D., & Khan, R. A. (1976). Reduction of severity of Verticillium wilt of cotton by the growth retardant tributyl (5-chloro-2-thienyl methyl) phosphonium chloride. Phytopathology, 66, 106–110.

    Article  CAS  Google Scholar 

  • Escarpa, A., & Gonzalez, M. C. (1998). High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. Journal of Chromatography A, 823(1–2), 331–337. https://doi.org/10.1016/S0021-9673(98)00294-5

    Article  CAS  Google Scholar 

  • Esim, N., Atıcı, Ö., & Mutlu, S. (2010). Buğdayın soğuk stresine cevabında nitrik oksit ve salisilik asitin koruyucu rolünün araştırılması. In: 20. Ulusal Biyoloji Kongresi; Denizli, Turkey. pp. 336-337.

  • Estrada, B., Aroca, R., Barea, J. M., & Ruiz-Lozano, J. M. (2013). Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Science, 201, 42–51. https://doi.org/10.1016/j.plantsci.2012.11.009

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2020). FAOSTAT [online]. Website http://www.fao.org/faostat/en/ [Accessed 01.07.2020].

  • Garmendia, I., Goicoechea, N., & Aguirreolea, J. (2005). Moderate drought influences the effect of arbuscular mycorrhizal fungi as biocontrol agents against Verticillium-induced wilt in pepper. Mycorrhiza, 15(5), 345–356. https://doi.org/10.1007/s00572-004-0336-z

    Article  Google Scholar 

  • Garrido, J. M. G. (2009). Arbuscular mycorrhizae as defense against pathogens. In F. W. J. James & S. T. Monica (Eds.), Defensive mutualism in microbial Symbiosis (pp. 183–198). CRC Press.

    Google Scholar 

  • Genç Kesimci, T., Demirci, E., Şimşek, U., Tohumcu, F., & Erdel, E. (2019). Çilek bitkilerinde besin elementi miktarına Verticillium dahliae’nın etkisi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(2), 626–635. https://doi.org/10.21597/jist.556229

    Article  Google Scholar 

  • Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84(3), 489–500.

    Article  Google Scholar 

  • Goicoechea, N. (2009). To what extent are soil amendments useful to control Verticillium wilt? Pest Management Science, 65(8), 831–839. https://doi.org/10.1002/ps.1774

    Article  CAS  Google Scholar 

  • Gülser, E. (2010). Domateste (Solanum lycopersicum L.) potasyum, salisilik asit ve humik asit uygulamalarının Fusarium solgunluğuna (Fusarium oxysporum f. sp. lycopersici), bitki gelişimi ve besin elementi alımına etkileri. Yüksek Lisans Tezi, Yüzüncü Yıl Üniversitesi, Van, Türkiye.

  • Hassoon, A. S., & Abduljabbar, I. A. (2019). Review on the role of salicylic acid in plants. In M. Hasanuzzaman, M. Fujita, M. C. M. T. Filho, T. A. R. Nogueira, & F. S. Galindo (Eds.), Sustainable Crop Production (pp. 61–64).

    Google Scholar 

  • He, J., Zou, Y., Wu, Q., & Kuča, K. (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Scientia Horticulturae, 262, 108745. https://doi.org/10.1016/j.scienta.2019.108745

    Article  CAS  Google Scholar 

  • Huang, Y. M., Srivastava, A. K., Zou, Y. N., Ni, Q. D., Han, Y., & Wu, Q. S. (2014). Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Frontiers in Microbiology, 5, 682. https://doi.org/10.3389/fmicb.2014.00682

    Article  Google Scholar 

  • Hwang, S. F., Chang, K. F., & Chakravarty, P. (1992). Effects of vesicular-arbuscular mycorrhizal fungi on the development of Verticillium and fusarium wilts of alfalfa. Plant Disease, 76(3), 239–243.

    Article  Google Scholar 

  • Jabnoun-Khiareddine, H., El-Mohamedy, R. S., Abdel-Kareem, F., Abdallah, R. A. B., Gueddes-Chahed, M., & Daami-Remadi, M. (2016). Variation in chitosan and salicylic acid efficacy towards soil-borne and air-borne fungi and their suppressive effect of tomato wilt severity. Journal of Plant Pathology & Microbiology, 6(11), 1000325. https://doi.org/10.4172/2157-7471.1000325

    Article  CAS  Google Scholar 

  • Jamiołkowska, A., Księżniak, A., Gałązka, A., Hetman, B., Kopacki, M., & Skwaryło-Bednarz, B. (2018). Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil. International Agrophysics, 32(1), 133–140. https://doi.org/10.1515/intag-2016-0090

    Article  CAS  Google Scholar 

  • Janda, T., Szalai, G., Tari, I., & Paldi, E. (1999). Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 208(2), 175–180. https://doi.org/10.1007/s004250050547

    Article  CAS  Google Scholar 

  • Jebara, S., Jebara, M., Limam, F., & Aouani, M. E. (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology, 162(8), 929–936. https://doi.org/10.1016/j.jplph.2004.10.005

    Article  CAS  Google Scholar 

  • Karagiannidis, N., Bletsos, F., & Stavropoulos, N. (2002). Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Scientia Horticulturae, 94(1–2), 145–156. https://doi.org/10.1016/S0304-4238(01)00336-3

    Article  CAS  Google Scholar 

  • Karagiannidis, N., Nikolaou, N., & Mattheou, A. (1995). Wirkung dreier va-mykorrhizapilze auf ertrag und nährstoffaufnahme von drei unterlagen. Vitis, 34(2), 85–89.

    Google Scholar 

  • Kaur, C., & Kapoor, H. C. (2002). Anti-oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science & Technology, 37(2), 153–161. https://doi.org/10.1046/j.1365-2621.2002.00552.x

    Article  CAS  Google Scholar 

  • Koç, E., & Üstün, A. S. (2008). Patojenlere karşı bitkilerde savunma ve antioksidanlar. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 24(1–2), 82–100.

    Google Scholar 

  • Kowalska, B. (2021). Management of the soil-borne fungal pathogen–Verticillium dahliae Kleb. Causing vascular wilt diseases. Journal of Plant Pathology, 103(4), 1185–1194.

    Article  Google Scholar 

  • Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Biology, 48(1), 251–275.

    Article  CAS  Google Scholar 

  • Lenoir, I., Fontaine, J., & Sahraoui, A. L. H. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry, 123, 4–15. https://doi.org/10.1016/j.phytochem.2016.01.002

    Article  CAS  Google Scholar 

  • Li, K. (2021). Determining effects of management practices on potato early dying and soil microbiome and assessing risk of fungicide resistance in Verticillium dahliae. MSc Thesis, The University of Maine, ME, USA.

  • Li, K., Wang, Y., Ge, T., Larkin, R., Smart, A., Johnson, S. B., & Hao, J. (2022). Risk evaluation of benzovindiflupyr resistance of Verticillium dahliae population in Maine. Plant Disease. Online Publication. https://doi.org/10.1094/PDIS-06-22-1384-RE

  • Liu, C., Wang, Y., Wu, S., Yang, T., & Kuca, K. (2020). Arbuscular mycorrhizal fungi improve the antioxidant capacity of tea (Camellia sinensis) seedlings under drought stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 1993–2005. https://doi.org/10.15835/nbha48412066

    Article  CAS  Google Scholar 

  • Low, P. S., & Merida, J. R. (1996). The oxidative burst in plant defense: Function and signal transduction. Physiologia Plantarum, 96(3), 533–542. https://doi.org/10.1111/j.1399-3054.1996.tb00469.x

    Article  CAS  Google Scholar 

  • Lǚ, L. H., Zou, Y. N., & Wu, Q. S. (2019). Mycorrhizas mitigate soil replant disease of peach through regulating root exudates, soil microbial population, and soil aggregate stability. Communications in Soil Science and Plant Analysis, 50(7), 909–921. https://doi.org/10.1080/00103624.2019.1594882

    Article  CAS  Google Scholar 

  • Medina, M. J. H., Gagnon, H., Piché, Y., Ocampo, J. A., Garrido, J. M. G., & Vierheilig, H. (2003). Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Science, 164(6), 993–998. https://doi.org/10.1016/S0168-9452(03)00083-9

    Article  CAS  Google Scholar 

  • Mercan, N. (2018). Soya'da (Glycine max) salisilik asit'in iyon parametrelerine etkisi. Yüksek Lisans Tezi, Harran Üniversitesi, Şanlıurfa, Türkiye.

  • Mimouni, H., Wasti, S., Manaa, A., Gharbi, E., Chalh, A., Vandoorne, B., Lutts, S., & Ahmed, H. B. (2016). Does salicylic acid (SA) improve tolerance to salt stress in plants a study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. Omics: a journal of integrative biology, 20(3), 180–190. https://doi.org/10.1089/omi.2015.0161

    Article  CAS  Google Scholar 

  • Morandi, D. (1996). Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant and Soil, 185(2), 241–251. https://doi.org/10.1007/BF02257529

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  • Nasırcılar, A. G., Ulukapı, K., & Şener, S. (2019). Exogenous salicylic acid applications as an example of molecules effective in abiotic stress tolerance in plants. Turkish Journal of Agriculture-Food Science and Technology, 7(3), 5–10. https://doi.org/10.24925/turjaf.v7isp3.5-10.3086

    Article  Google Scholar 

  • Okur, Y. (2017). Ekmeklik buğday kalitesini değerlendirmede kullanılan kimyasal ve fiziksel özelliklerin incelenmesi. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara, Türkiye.

  • Özeker, E. (2005). Salisilik asit ve bitkiler üzerindeki etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 42(1), 213–223.

    Google Scholar 

  • Özgönen, H. (2011). Arbüsküler mikorizal fungusların pamukta bitki gelişimine ve Verticillium solgunluğu (Verticillium dahliae Kleb.) üzerine etkileri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(3), 171–177.

    Google Scholar 

  • Özgönen, H., Biçici, M., & Erkılıç, A. (2001). The effect of salicyclic acid and endomycorrhizal fungus Glomus etunicatumon plant development of tomatoes and fusarium wilt caused by fusarium oxysporum f. sp. lycopersici. Turkish Journal of Agriculture and Forestry, 25(1), 25–29.

    Google Scholar 

  • Özmen, Ö., & Koç, Ş. (2006). Kaman (Kırşehir, Türkiye) florit cevherleşme alanlarında Thymus Siphyleus Boiss Subsp. Rosulans (Borbas) ve Bromus Sterilis L. Poaceace (Gramineae) türlerinde florür ve iz element birikimi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 21(4), 729–735.

    Google Scholar 

  • Palta, Ş., Demir, S., Şengönül, K., Kara, Ö., & Şensoy, H. (2010). Arbüsküler mikorizal funguslar (AMF), bitki ve toprakla ilişkileri, mera islahındaki önemleri. Bartın Orman Fakültesi Dergisi, 12(18), 87–98.

    Google Scholar 

  • Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158–161.

    Article  Google Scholar 

  • Rajkumar, M., Lee, K. J., & Freitas, H. (2008). Effects of chitin and salicylic acid on biological control activity of Pseudomonas spp. against damping off of pepper. South African Journal of Botany, 74(2), 268–273. https://doi.org/10.1016/j.sajb.2007.11.014

    Article  CAS  Google Scholar 

  • Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Biology, 43(1), 439–463. https://doi.org/10.1146/annurev.pp.43.060192.002255

    Article  CAS  Google Scholar 

  • Ratushnyak, A. Y., Ratushnyak, A. A., Andreeva, M. G., Kayumov, A. R., Bogachev, M. I., & Trushin, M. V. (2012). Effect of lead and salicylic acid on some plant growth parameters in Pisum sativum L. World Applied Sciences Journal, 19(8), 1157–1159. https://doi.org/10.5829/idosi.wasj.2012.19.08.2782

    Article  CAS  Google Scholar 

  • Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence, its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321–3338. https://doi.org/10.1093/jxb/err031

    Article  CAS  Google Scholar 

  • Şavur, O. B. (2015). Domates kök ve kök boğazı çürüklüğü hastalığına (Fusarium oxysporum f. sp. radicis- Lycopersici Jarvis & Shoemaker) karşı arbusküler mikorhizal fungus (AMF) ve salisilik asit uygulamalarının domates (Solanum lycopersicum L.) bitkisinin bazı gelişim ve verim parametreleri ile hastalık şiddetine etkisi. Doktora Tezi, Yüzüncü Yıl Üniversitesi, Van, Türkiye.

  • Sensoy, S., Demir, S., Turkmen, O., Erdinc, C., & Savur, O. B. (2007). Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Scientia Horticulturae, 113(1), 92–95. https://doi.org/10.1016/j.scienta.2007.01.023

    Article  Google Scholar 

  • Shukla, A., Dehariya, K., Vyas, D., & Jha, A. (2015). Interactions between arbuscular mycorrhizae and fusarium oxysporum f. sp. ciceris, effects on fungal development, seedling growth and wilt disease suppression in Cicer arietinum L. Archives of Phytopathology and Plant Protection, 48(3), 240–252. https://doi.org/10.1080/03235408.2014.884831

    Article  Google Scholar 

  • Sun, Y., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34(3), 497–500. https://doi.org/10.1093/clinchem/34.3.497

    Article  CAS  Google Scholar 

  • Taheri, A. H., Sanei, S. J., & Razavi, S. E. (2021). Salicylic acid is associated with improved growth and resistance of olives (Olea europaea L.) to Verticillium wilt. Journal of Plant Physiology and Breeding, 11(1), 75–85. https://doi.org/10.22034/JPPB.2021.13885

    Article  Google Scholar 

  • Tanner, H., & Brunner, H. R. (1979). Getränke-analytik. Verlag heller chemie und verwaltungsgesellschaft mbH. D-7170 (pp. 57–61). Germany: Schwaebisch Hall.

  • Teranishi, Y., Tanaka, A., Osumi, M., & Fukui, S. (1974). Catalase activities of hydrocarbon-utilizing candida yeasts. Agricultural and Biological Chemistry, 38(6), 1213–1220. https://doi.org/10.1080/00021369.1974.10861301

    Article  CAS  Google Scholar 

  • Torun, H. (2019). Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity. Physiologia Plantarum, 165(2), 169–182. https://doi.org/10.1111/ppl.12798

    Article  CAS  Google Scholar 

  • Tucuch-Haas, C. J., Pérez-Balam, J. V., Dzib-Ek, M. G., Alcántar-González, G., & Larqué-Saavedra, A. (2019). Salicylic acid increases the accumulation of macro and micronutrients in habanero pepper. Revista Mexicana De Ciencias Agrícolas, 10(4), 839–847. https://doi.org/10.29312/remexca.v10i4.1694

    Article  Google Scholar 

  • Tutar, F. K., & Erkılıç, A. (2016). Patlıcanda solgunluk hastalıkları (Verticillium dahliae ve Fusarium oxysporum f. sp. melongenae)'na karşı mikorizal fungusların ve abiyotik uyarıcıların etkilerinin belirlenmesi. Çukurova Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 34(5), 32–42.

    Google Scholar 

  • Uçkun, K., & Gezgin, S. (2008). Makro bitki besin elementlerinin hastalıklarla ilişkisi. In: 4. Ulusal Bitki Besleme ve Gübre Kongresi; Konya, Turkey.

  • Vierheilig, H., & Bago, B. (2005). Host and non-host impact on the physiology of the AM symbiosis. In S. Declerck, J. A. Fortin, & D. G. Strullu (Eds.), In Vitro culture of mycorrhizas soil biology (pp. 139–158). Springer.

    Chapter  Google Scholar 

  • Villani, A., Tommasi, F., & Paciolla, C. (2021). The arbuscular mycorrhizal fungus Glomus viscosum improves the tolerance to Verticillium wilt in artichoke by modulating the antioxidant defense systems. Cells, 10(8), 1944. https://doi.org/10.3390/cells10081944

    Article  CAS  Google Scholar 

  • Vranová, E., Inzé, D., & Van Breusegem, F. (2002). Signal transduction during oxidative stress. Journal of Experimental Botany, 53(372), 1227–1236. https://doi.org/10.1093/jexbot/53.372.1227

    Article  Google Scholar 

  • Wang, C., Zhang, S., Wang, P., Hou, J., Qian, J., Ao, Y., Lu, J., & Li, L. (2011). Salicylic acid involved in the regulation of nutrient elements uptake and oxidative stress in Vallisneria natans (Lour.) Hara under Pb stress. Chemosphere, 84(1), 136–142. https://doi.org/10.1016/j.chemosphere.2011.02.026

    Article  CAS  Google Scholar 

  • Yavaş, İ., Akgül, H. N., & Ünay, A. (2016). Bitkilerin kuraklığa dayanıklılığını artırmaya yönelik uygulamalar. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 4(1), 48–57.

    Google Scholar 

  • Zhu, X., Song, F., & Liu, S. (2011). Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. Journal of Food, Agriculture and Environment, 9(2), 583–587.

    Google Scholar 

Download references

Acknowledgements

This project was supported by the funds received from the Scientific and Technological Research Council of Turkey (TÜBİTAK Project No. 119O059).

Author information

Authors and Affiliations

Authors

Contributions

Authors declares the contribution of the authors is equal.

Corresponding author

Correspondence to Furkan Coşkun.

Ethics declarations

Ethical statement

The manuscript is not submitted to another journal. The submitted manuscript is original and it is not published elsewhere in any form or language (partially or in full), and it does not concern an expansion of previous work. The study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time. Results are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. Data was collected from in vitro experiments and managed with statistical software with total honestly and transparence. No data, text, or theories by others are presented as if they were the author’s own. All collected data, and the performed analysis are available. Proper acknowledgements to other works are given. This piece of work respects third parties’ rights such as copyright and/or moral rights.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coşkun, F., Alptekin, Y. & Demir, S. Effects of arbuscular mycorrhizal fungi and salicylic acid on plant growth and the activity of antioxidative enzymes against wilt disease caused by Verticillium dahliae in pepper. Eur J Plant Pathol 165, 163–177 (2023). https://doi.org/10.1007/s10658-022-02596-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-022-02596-6

Keywords

Navigation