Skip to main content
Log in

A soil sampling method to estimate the population density of Tylenchulus semipenetrans cobb, 1913 in infested citrus orchards of the Fars province in Southern Iran

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Composite soil samples were taken to optimize sampling patterns used to estimate the soil population density of malse and second-stage juveniles (J2s) of the citrus nematode, Tylenchulus semipenetrans in four nematode-infested citrus orchards (1 ha each) in Fars province, southern Iran, during 2019. Samples were collected from the upper soil layer (20 to 30 cm depth) under the canopy of 13 selected trees in each orchard. The resulting data were used as the basis for further analysis. A negative binomial model was used to describe the nematode spatial distribution and to estimate sample size. Sampling patterns were evaluated using the coefficient of variation (CV) of the mean as a measure of precision. The cost of collecting, processing and counting the nematodes was calculated and used for the selection of the most suitable sampling pattern. Results indicated that sampling using a left zigzag pattern was the most cost-efficient method which provided a statistically acceptable level of reliability defined as the extent to which the same measurements obtained under different sampling patterns yield similar results. Furthermore, among the sampling patterns tested, sampling from a hypothetical large square of orchards could be recommended as an acceptable alternative for estimating the population density of the citrus nematode in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd-Elgawad, M. M. (2021). Optimizing sampling and extraction methods for plant-parasitic and Entomopathogenic nematodes. Plants, 10, 629. https://doi.org/10.3390/plants10040629

    Article  Google Scholar 

  • Abd-Elgawad, M. M. M. (2016). Use of Taylor’s power law parameters in nematode sampling. International journal pharmtech research, 9, 999–1004.

    Google Scholar 

  • Abd-Elgawad, M. M. M. (2017). Accuracy and precision of phytonematode sampling plans. Agricultural Engineering International: CIGR Journal, 6–15. Special Issue: Agri-food and biomass supply chains.

  • Abd-Elgawad, M. M. M., & Hammam, M. M. A. (2014). Sample optimization for entomopathogenic nematodes and their host Tuta absoluta in Egypt. Middle East Journal of Agricultural Research, 3, 918–925.

    Google Scholar 

  • Abd-Elgawad, M. M. M., & Hasabo, S. A. (1995). Spatial distribution of the phytonematode community in Egyptian berseem clover (Trifolium alexandrinum L.) fields. Fundamental & Applied Nematology, 18, 329–334.

    Google Scholar 

  • Alby, T., Ferris, M., & Ferris, V. R. (1983). Dispersion and distribution of Pratylenchus scribneri and Hoplolaimus galeatus in soybean fields. Journal of Nematology, 15, 418–426.

    CAS  Google Scholar 

  • Andrassy, I. (1962). The problem of number and size of sampling unit in quantitative studies of soil Nematoda. In Murphy, P. W. (Ed.), Progress in Soil Zoology (pp. 65–67). Butterworths.

  • Araujo, E. R., Resende, R. S., Krezanoski, C. E., & Duarte, H. S. (2019). A standard area diagram set for severity assessment of botrytis leaf blight of onion. European Journal of Plant Pathology, 153, 273–277. https://doi.org/10.1007/s10658-018-1526-4

    Article  Google Scholar 

  • Asrari, E., & Masoudi, M. (2010). Hazard assessment of climate changes, a case study area: Fars Province, Iran. International Pollution Research, 29, 275–281.

    CAS  Google Scholar 

  • Barker, K. R., & Campbell, C. L. (1981). Sampling nematode populations. In B.M. Zuckerman, & R.A. Rohde (Eds.), plant parasitic nematodes (pp. 451–474.). Academic press INC. https://doi.org/10.1016/b978-0-12-782203-7.50024-8

    Book  Google Scholar 

  • Barnhart, H. X., Haber, M. J., & Lin, L. I. (2007). An overview on assessing agreement with continuous measurements. Journal of Biopharmaceutical Statistics, 17, 529–569. https://doi.org/10.1080/10543400701376480

    Article  Google Scholar 

  • Been, T. H., & Schomaker, C. H. (2006). Distribution patterns and sampling. In R. N. Perry & M. Moens (Eds.), Plant nematology (pp. 331–358). CABI Publishing. https://doi.org/10.1079/9781780641515.0331

    Chapter  Google Scholar 

  • Boag, B., & Topham, P. B. (1984). Aggregation of plant parasitic nematodes and Taylor’s power law. Nematologica, 30, 348–357. https://doi.org/10.1163/187529284x00257

    Article  Google Scholar 

  • Bock, C. H., Parker, P. E., Cook, A. Z., & Gottwald, T. R. (2008). Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Disease, 92, 530–541. https://doi.org/10.1094/pdis-92-4-0530

    Article  CAS  Google Scholar 

  • Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29, 59–107. https://doi.org/10.1080/07352681003617285

    Article  Google Scholar 

  • Ciancio, A., Landriscina, S., & Lamberti, F. (1995). Temporal and spatial dynamics of Pratylenchus vulnus parasitizing walnut. Nematologia Mediterranea, 23, 367–371.

    Google Scholar 

  • Cochran, W. G. (1977). Sampling Techniques. John Wiley & Sons.

    Google Scholar 

  • Cooke, B. M. (2006). Disease assessment and yield loss. In B. M. Cooke, D. G. Jones, & B. Kaye (Eds.), The epidemiology of plant diseases (pp. 43–80). Springer.

    Chapter  Google Scholar 

  • Davis, R. M. (1984). Distribution of Tylenchulus semipenetrans in a Texas grapefruit orchard. Journal of Nematology, 16, 313–317.

    CAS  Google Scholar 

  • Davis, R. M., Heald, C. M., & Timmer, L. W. (1982). Chemical control of the citrus nematode on grapefruit. Rio Grande Valley Horticultural Society, 35, 59–63.

    CAS  Google Scholar 

  • De Martonne, E. (1926). Une nouvelle function climatologique: L’indice d’aridité. Meteorologie, 2, 449–459.

    Google Scholar 

  • Duncan, L. W. (1999). Nematode diseases of citrus. In L. W. Timmer & L. W. Duncan (Eds.), Citrus health management (pp. 136–148). American Phytopathological Society Press. https://doi.org/10.1079/9780851997278.0437

    Chapter  Google Scholar 

  • Duncan, L. W. (2005). Nematode parasites of citrus. In Luc, M., Sikora, R.A., & Bridge, J. (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (2nd ed., pp. 437–466). CAB International. https://doi.org/10.1079/9780851997278.0437.

  • Duncan, L. W. (2009). Managing nematodes in citrus orchards. In Ciancio, A., & Mukerji, K. G. (Eds.), Integrated Management of Fruit Crops and Forest Nematodes (pp. 135–174). Springer. https://doi.org/10.1007/978-1-4020-9858-1_6.

  • Duncan, L. W., El-Morshedy, M. M., & McSorley, R. (1994). Sampling citrus fibrous roots and Tylenchulus semipenetrans. Journal of Nematology, 26, 442–451.

    CAS  Google Scholar 

  • Duncan, L. W., Ferguson, J. J., Dunn, R. A., & Noling, J. W. (1989). Application of Taylor’s power law to sample statistics of Tylenchulus semipenetrans in Florida citrus. Journal of Nematology, 21, 707–711.

    CAS  Google Scholar 

  • Elliott, J. M. (1977). Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biological Association.

    Google Scholar 

  • Everitt, B. S., Skrondal, A. (2010). The Cambridge dictionary of statistics. Cambridge University Press. http://196.43.179.3:8080/xmlui/handle/123456789/1213.

  • Faostat. (2020). Production quantities and area harvested of citrus. Compare data. http://www.fao.org/faostat/en/#compare. Accessed 20 Jul 2022.

  • Farias, P. R. S., Sánchez-Vila, X., Barbosa, J. C., Vieira, S. R., Ferraz, L. C. C. B., & Solís-Delfin, J. (2002). Using geostatistical analysis to evaluate the presence of Rotylenchulus reniformis in cotton crops in Brazil: Economic implications. Journal of Nematology, 34, 232–238.

    CAS  Google Scholar 

  • Ferris, H. (1985). Population assessment and management strategies for plant-parasitic nematodes. Agriculture, Ecosystems & Environment, 12, 285–299. https://doi.org/10.1016/0167-8809(85)90003-9

    Article  Google Scholar 

  • Ferris, H., Mullens, A., & Foord, K. E. (1990). Stability and characteristics of spatial description parameters for nematode populations. Journal of Nematology, 22, 427–439.

    CAS  Google Scholar 

  • Francl, L. J. (1986). Improving the accuracy of sampling field plots for plant-parasitic nematodes. Journal of Nematology, 18, 190–195.

    CAS  Google Scholar 

  • Garabedian, S., Van Gundy, S. D., Mankau, R., & Radewald, J. D. (1984). Nematodes. In Berkeley, C. A. (Ed.), Integrated Pest Management for Citrus (pp. 129–131). Division of Agriculture and Natural Resources Publications, University of California.

  • Ghaderi, R., Hamzehzarghani, H., & Karegar, A. (2012). Sampling optimization for root lesion nematodes in the irrigated wheat fields of Marvdasht region, Fars, Iran. Nematologia Mediterranea, 40, 3–10.

    Google Scholar 

  • Ghaderi, R., & Mokaram Hesar, A. (2018). The family of Tylenchulidae. In R. Ghaderi, L. Kashi, & A. Karegar (Eds.), Plant-parasitic nematodes in Iran (pp. 159–192). Marjaeelm Press.

    Google Scholar 

  • Goodell, P., & Ferris, H. (1980). Plant-parasitic nematode distributions in an alfalfa field. Journal of Nematology, 12, 136–141.

    CAS  Google Scholar 

  • Goodell, P., & Ferris, H. (1981). Sample optimization for five plant-parasitic nematodes in an alfalfa field. Journal of Nematology, 13, 304–313.

    CAS  Google Scholar 

  • Hooper, D. J., Hallmann, J., & Subbotin, S. A. (2005). Methods for extraction, processing and detection of plant and soil nematodes. In Sikora, R. A.,  Coyne, D., Hallmann, J., & Timper, P. (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (2nd ed., pp. 53–87). CABI Publishing. https://doi.org/10.1079/9780851997278.0053.

  • Koenning, S. R., Wrather, J. A., Kirkpatrick, T. L., Walker, N. R., Starr, J. L., & Mueller, J. D. (2004). Plant-parasitic nematodes attacking cotton in the United States: Old and emerging production challenges. Plant Disease, 88, 100–113. https://doi.org/10.1094/pdis.2004.88.2.100

    Article  Google Scholar 

  • Kranz, J. (1988). Measuring plant disease. In J. Kranz & J. Rotem (Eds.), Experimental techniques in plant disease epidemiology (1st ed., pp. 35–50). Springer-Verlag. https://doi.org/10.1007/978-3-64295534-1_4

    Chapter  Google Scholar 

  • Labuschagne, N., & Kotze, J. M. (1988). Factors affecting feeder root rot of citrus caused by fusarium solani. In R. Goren, K. Mendel, & N. Goren (Eds.), Citriculture: Proceedings of the sixth international Citrus congress (pp. 1852). International Society of Citriculture.

    Google Scholar 

  • Lin, L. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255–268. https://doi.org/10.2307/2532051

    Article  CAS  Google Scholar 

  • Madden, L. V., Hughes, G., & Van Den Bosch, F. (2007). The study of plant diseases epidemics. APS Press.

    Google Scholar 

  • Mahfouz, M. (1992). Spatial distribution of the phytonematode community in Egyptian citrus groves. Fundamental & Applied Nematology., 15, 367–373.

    Google Scholar 

  • Mashela, P. W., & Nthangeni, M. E. (2002). Osmolyte allocation in response to Tylenchulus semipenetrans infection, stem girdling, and root pruning in citrus. Journal of Nematology, 34, 273–277.

    CAS  Google Scholar 

  • McSorley, R. (1982). Simulated sampling strategies for nematodes distributed according to a negative binomial model. Journal of Nematology, 14, 517–522.

    CAS  Google Scholar 

  • McSorley, R., Dankers, W. H., Parrado, J. L., & Reynolds, J. S. (1985). Spatial distribution of the nematode community on Perrine marl soils. Nematropica, 15, 77–92.

    Google Scholar 

  • McSorley, R., & Dickson, D. W. (1991). Determining consistency of spatial dispersion of nematodes in small plots. Journal of Nematology, 23, 65–72.

    CAS  Google Scholar 

  • McSorley, R., & Parrado, J. L. (1982). Estimating relative error in nematode numbers from single soil samples composed of multiple cores. Journal of Nematology, 14, 522–529.

    CAS  Google Scholar 

  • Meek, W. D., Howell, T. A., & Phene, C. (2009). Concordance correlation for model performance assessment: An example with reference evapotranspiration observations. Agronomy Journal, 101, 1012–1018. https://doi.org/10.2134/agronj2008.0180x

    Article  Google Scholar 

  • Monfort, W. S., Kirkpatrick, T. L., & Mauromoustakos, A. (2008). Spread of Rotylenchulus reniformis in an Arkansas cotton field over a four-year period. Journal of Nematology, 40, 161–166.

    CAS  Google Scholar 

  • Nita, M., Ellis, M. A., & Madden, L. V. (2003). Reliability and accuracy of visual estimation of Phomopsis leaf blight of strawberry. Phytopathology, 93, 995–1005. https://doi.org/10.1094/phyto.2003.93.8.995

    Article  CAS  Google Scholar 

  • Nutter, F. W., Jr. (2001). Disease assessment terms and concepts. In O. C. Maloy & T. D. Murray (Eds.), Encyclopedia of plant pathology (2nd ed., pp. 312–323). John Wiley & Sons.

    Google Scholar 

  • Nutter, F. W., Jr., Gleason, M. L., Jenco, J. H., & Christians, N. L. (1993). Accuracy, intrarater repeatability, and interrater reliability of disease assessment systems. Phytopathology, 83, 806–812. https://doi.org/10.1094/phyto-83-806

    Article  Google Scholar 

  • Nutter, F. W., Jr., & Schultz, P. M. (1995). Improving the accuracy and precision of disease assessments: Selection of methods and use of computer-aided training programs. Canadian Journal of Plant Pathology, 17, 174–185. https://doi.org/10.1080/07060669509500709

    Article  Google Scholar 

  • Olmstead, J. W., Lang, G. A., & Grove, G. G. (2001). Assessment of severity of powdery mildew infection of sweet cherry leaves by digital image analysis. HortScience, 36, 107–111. https://doi.org/10.21273/hortsci.36.1.107

    Article  Google Scholar 

  • Proctor, J. R., & Marks, C. F. (1975). The determination of normalizing transformations for nematode count data from soil samples and of efficient sampling schemes. Nematologica, 20, 395–406. https://doi.org/10.1163/187529274x00023

    Article  Google Scholar 

  • Prot, J. C., & Ferris, H. (1992). Sampling approaches for extensive surveys in nematology. Journal of Nematology, 24, 757–764.

    CAS  Google Scholar 

  • Rumiani, M., Hamhehzarghani, H., Karegar, A., & Ghaderi, R. (2021). Optimization of citrus tree sampling pattern for estimating population of citrus nematode in the soil of infested orchards in Fars province, southern Iran. Crop Protection, 142, 105523. https://doi.org/10.1016/j.cropro.2020.105523

    Article  Google Scholar 

  • Salama, H. S., & Abd-Elgawad, M. M. M. (2010). Spatial patterns of the red palm weevil and applied entomopathogenic nematode Heterorhabditis bacteriophora. Archiv für Phytopathologie und Pflanzenschutz, 43, 689–699. https://doi.org/10.1080/03235400802144397

    Article  Google Scholar 

  • Shoukri, M. M., Asyali, M. H., & Donner, A. (2004). Sample size requirements for the design of reliability study: Review and new results. Statistical Methods in Medical Research, 13, 251–271. https://doi.org/10.1191/0962280204sm365ra

    Article  Google Scholar 

  • Souza, R. M., Volpato, A. R., & Viana, A. P. (2007). Field assessment of different sampling strategies for coffee plantations parasitized by Meloidogyne exigua. Nematropica, 37, 345–355.

    Google Scholar 

  • Spiegel-Roy, P., & Goldschmidt, E. E. (1996). The biology of Citrus. Cambridge university press. https://doi.org/10.1017/cbo9780511600548.003

  • Taylor, L. R. (1961). Aggregation, variance and the mean. Nature, 189, 732–735. https://doi.org/10.1038/189732a0

    Article  Google Scholar 

  • Taylor, L. R., Woiwod, I. P., & Perry, J. N. (1978). The density-dependence of spatial behavior and the rarity of randomness. Journal of Animal Ecology, 47, 383–406. https://doi.org/10.2307/3790

    Article  Google Scholar 

  • Taylor, L. R., Woiwod, I. P., & Perry, J. N. (1979). The negative binomial as a dynamic ecological model for aggregation, and the density dependence of k. Journal of Animal Ecology, 48, 289–304. https://doi.org/10.2307/4114

    Article  Google Scholar 

  • Timmer, L. W. (1977). Control of citrus nematode Tylenchulus semipenetrans on fine-textured soil with DBCP and oxamyl. Journal of Nematology, 9, 45–50.

    CAS  Google Scholar 

  • Timmer, L. W., & Davis, R. M. (1982). Estimate of yield loss from the citrus nematode in Texas grapefruit. Journal of Nematology, 14, 582–585.

    CAS  Google Scholar 

  • Wheeler, T. A., Madden, L. V., Rowe, R. C., & Riedel, R. M. (2000). Effects of quadrat size and time of year for sampling of Verticillium dahliae and lesion nematodes in potato fields. Plant Disease, 84, 961–966. https://doi.org/10.1094/pdis.2000.84.9.961

    Article  CAS  Google Scholar 

  • Whitehead, A. G., & Hemming, J. R. (1965). A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annals of Applied Biology, 55, 25–38. https://doi.org/10.1111/j.1744-7348.1965.tb07864.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support provided by Shiraz University to conduct this work.

Funding

This research was funded by Shiraz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habiballah Hamzehzarghani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumiani, M., Hamzehzarghani, H., Karegar, A. et al. A soil sampling method to estimate the population density of Tylenchulus semipenetrans cobb, 1913 in infested citrus orchards of the Fars province in Southern Iran. Eur J Plant Pathol 165, 27–40 (2023). https://doi.org/10.1007/s10658-022-02586-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-022-02586-8

Keywords

Navigation