Skip to main content
Log in

Anti-Pythium activity of ZzAMP, a serine protease inhibitor (SPI) from Zingiber zerumbet rhizome, mediated by zoospore binding and oxidative stress

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

An abundance of protease inhibitors (PIs) in plant storage organs signifies their importance in plant defense. In below-ground storage tissues of resistant plants, PIs which are antimicrobial proteins (AMPs) stall host plant invasion, mediated by secretory proteases of necrotrophic soil-borne phytopathogens like Pythium spp., through competitive inhibition. A serine PI designated ZzAMP isolated from Zingiber zerumbet rhizomes was investigated for its inhibitory effect to zoospores of Pythium myriotylum, the etiological agent for soft rot disease, a major problem confronting ginger productivity. P. myriotylum zoospore inhibition by ZzAMP was observed to be optimal at pH 8.0 (79 ± 3.5%) with considerable stability at alkaline pH 12.0 (71 ± 1%). The optimal temperature yielding zoospore inhibition was determined as 45 °C (77.1 ± 0.2%) with protein stability observed over a wide range of temperatures from 25 to 65 °C. Peroxidase-dependent staining using 3, 3′-diaminobenzidine (DAB) to detect the generation of hydrogen peroxide (H2O2) by Pythium zoospores revealed browning of spores due to DAB stain uptake in ZzAMP treated spores compared to control, indicative of H2O2 burst. Localization experiments with fluorescein isothiocyanate (FITC)-labeled ZzAMP detected the labeled protein on the zoospore surface. Experiments thus revealed the mechanistic basis of zoospore inhibition by ZzAMP, which is of relevance considering the role of zoospores in mediating rapid disease spread and host invasion by Pythium species. The present study signifies the potential of ZzAMP in the development of formulations with applications in soft-rot disease control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Data generated from this study are available from the corresponding author upon request.

References

  • Arora, H., Sharma, A., Sharma, S., Haron, F. F., Gafur, A., Sayyed, R. Z., & Datta, R. (2021). Pythium damping-off and root rot of Capsicum annuum L.: Impacts, diagnosis, and management. Microorganisms, 9(4), 823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audenaert, K., Callewaert, E., Hofte, M., De Saeger, S., & Haesaert, G. (2010). Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by fusarium graminearum. BMC Microbiology, 10, 112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacha, A. B., Jemel, I., Moubayed, N. M. S., & Abdelmalek, I. B. (2017). Purification and characterization of a newly serine protease inhibitor from Rhamnus frangula with potential for use as therapeutic drug. 3 Biotech, 7, 148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandara, Y. M. A. Y., Weerasooriya, D. K., Liu, S., & Little, C. R. (2018). The necrotrophic fungus Macrophomina phaseolina promotes charcoal rot susceptibility in grain sorghum through induced host cell-wall degrading enzymes. Phytopathology, 108(8), 948–956.

    Article  CAS  PubMed  Google Scholar 

  • Berni, R., Cantini, C., Romi, M., Hausman, J. F., Guerriero, G., & Cai, G. (2018). Agrobiotechnology goes wild: Ancient local varieties as sources of bioactives. International Journal of Molecular Sciences, 19(8), 2248.

    Article  PubMed Central  Google Scholar 

  • Bijina, B., Chellappan, S., Krishna, J. G., Basheer, S. M., Elyas, K. K., Bahkali, A. H., & Chandrasekaran, M. (2011). Protease inhibitor from Moringa oleifera with potential for use as therapeutic drug and as seafood preservative. Saudi J Biol Sci, 18(3), 273–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudjeko, T., Andeme-Onzighi, C., Vicre, M., Balange, A.-P., Ndoumou, D. O., & Driouich, A. (2005). Loss of pectin is an early event during infection of cocoyam roots by Pythium myriotylum. Planta, 223(2), 271–282.

    Article  PubMed  Google Scholar 

  • Chaganti, L. K., Venkatakrishnan, N., & Bose, K. (2018). An efficient method for FITC labelling of proteins using tandem affinity purification. Bioscience Reports, 38(6), BSR20181764.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Wu, L., Lu, M., Lu, S., Li, Z., & Ding, W. (2020). Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Frontiers in Microbiology, 11, 365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunaevsky, Y. E., Gladysheva, I. P., Pavlukova, E. B., Beliakova, G. A., Gladyshev, D. P., Papisova, A. I., Larionova, N. I., & Belozersky, M. A. (1997). The anionic protease inhibitor BWI-1 from buckwheat seeds. Kinetic properties and possible biological role. Physiologia Plantarum, 101, 483–488.

    Article  CAS  Google Scholar 

  • Feng, J., Hwang, R., Hwang, S.-F., Strelkov, S. E., Gossen, B. D., Zhou, Q.-X., & Peng, G. (2010). Molecular characterization of a serine protease Pro1 from Plasmodiophora brassicae that stimulates resting spore germination. Molecular Plant Pathology, 11(4), 503–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geethu, C., & Aswati Nair, R. (2014). Purification and biochemical characterization of an extracellular endoglucanase from the necrotrophic oomycete, Pythium myriotylum Dreschler. Journal of Basic Microbiology, 54(12), 1322–1330.

    Article  CAS  PubMed  Google Scholar 

  • Geethu, C., Resna, A. K., & Nair, R. A. (2013). Characterization of major hydrolytic enzymes secreted by Pythium myriotylum, causative agent for soft rot disease. Antonie Van Leeuwenhoek, 104, 749–757.

    Article  CAS  PubMed  Google Scholar 

  • Giudici, A. M., Regente, M. C., & Canal, L. (2000). A potent antifungal protein from Helianthus annuus flowers is a trypsin inhibitor. Plant Physiology and Biochemistry, 38, 881–888.

    Article  CAS  Google Scholar 

  • Hardham, A. R. (2007). Cell biology of plant–oomycete interactions. Cellular Microbiology, 9(1), 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Hellinger, R., & Gruber, C. W. (2019). Peptide-based protease inhibitors from plants. Drug Discovery Today, 24(9), 1877–1889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho, H. H. (2018). The taxonomy and biology of Phytophthora and Pythium. J Bacteriol Mycol, 6(1), 40–45.

    Google Scholar 

  • Joshi, B. N., Sainani, M. N., Bastawade, K. B., Gupta, V. S., & Ranjekar, P. K. (1998). Cysteine protease inhibitor from pearl millet: A new class of antifungal protein. Biochemical and Biophysical Research Communications, 246(2), 382–387.

    Article  CAS  PubMed  Google Scholar 

  • Kamoun, S. (2003). Molecular genetics of pathogenic oomycetes. Eukaryotic Cell, 2(2), 191–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavitha, P. G., Nair, P., Aswati, N. R., Jayachandran, B. K., Sabu, M., & Thomas, G. (2007). AFLP polymorphism and Pythium response in Zingiber species. In R. Keshvachandran, P. Nazeem, D. Girija, P. S. John, & K. V. Peter (Eds.), Recent trends in horticultural biotechnology (Vol. II, pp. 497–503). New Delhi: New India Publishing Agency.

  • Khadeeva, N. V., Kochieva, E. Z., Tcherednitchenko, M. Y., Yakovleva, E. Y., Sydoruk, K. V., Bogush, V. G., Dunaevsky, Y. E., & Belozersky, M. A. (2009). Use of buckwheat seed protease inhibitor gene for improvement of tobacco and potato plant resistance to biotic stress. Biochemistry (Mosc), 74, 260–267.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Park, S. C., Hwang, I., Cheong, H., Nah, J. W., Hahm, K. S., & Park, Y. (2009). Protease inhibitors from plants with antimicrobial activity. International Journal of Molecular Sciences, 10(6), 2860–2872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. Y., Park, S. C., Kim, M. H., Lim, H. T., Park, Y., & Hahm, K. S. (2005). Antimicrobial activity studies on a trypsin-chymotrypsin protease inhibitor obtained from potato. Biochemical and Biophysical Research Communications, 330(3), 921–927.

    Article  CAS  PubMed  Google Scholar 

  • Lamichhane, J. R., Dürr, C., Schwanck, A. A., Robin, M.-H., Sarthou, J.-P., Cellier, V., Messéan, A., & Aubertot, J.-N. (2017). Integrated management of damping-off diseases. A review. Agron. Sustain. Dev., 37, 10.

    Article  Google Scholar 

  • Latijnhouwers, M., de Wit, P. J., & Govers, F. (2003). Oomycetes and fungi: Similar weaponry to attack plants. Trends in Microbiology, 11(10), 462–469.

    Article  CAS  PubMed  Google Scholar 

  • Lebeda, A., Luhová, L., Sedláøová, M., & Jančová, D. (2001). The role of enzymes in plant-fungal pathogens interactions. J Plant Dis Prot, 108, 89–111.

    CAS  Google Scholar 

  • Lévesque, C. A., Brouwer, H., Cano, L., Hamilton, J. P., Holt, C., Huitema, E., Raffaele, S., Robideau, G. P., Thines, M., Win, J., Zerillo, M. M., Beakes, G. W., Boore, J. L., Busam, D., Dumas, B., Ferriera, S., Fuerstenberg, S. I., Gachon, C. M. M., Gaulin, E., … Buell, C. R. (2010). Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology, 11, R73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorito, M., Broadway, R. M., Hayes, C. K., Woo, S. L., Noviello, C., Williams, D. L., & Harman, G. E. (1994). Proteinase inhibitors from plants as a novel class of fungicides. Molecular Plant-Microbe Interactions, 7(4), 525–527.

    Article  CAS  Google Scholar 

  • Mandal, S. M., Porto, W. F., De, D., Phule, A., Korpole, S., Ghosh, A. K., Roy, S. K., & Franco, O. L. (2014). Screening of serine protease inhibitors with antimicrobial activity using iron oxide nanoparticles functionalized with dextran conjugated trypsin and in silico analyses of bacterial serine protease inhibition. Analyst, 139(2), 464–472.

    Article  CAS  PubMed  Google Scholar 

  • Mello, G. C., Oliva, M. L. V., Sumikawa, J. T., Machado, O. L. T., Marangoni, S., Novello, J. C., & Macedo, M. L. R. (2001). Purification and characterization of a new trypsin inhibitor from Dimorphandra mollis seeds. Journal of Protein Chemistry, 20, 625–632.

    Article  CAS  PubMed  Google Scholar 

  • Mendieta, J. R., Pagano, M. R., Munoz, F. F., Daleo, G. R., & Guevara, M. G. (2006). Antimicrobial activity of potato aspartic proteases (StAPs) involves membrane permeabilization. Microbiology, 152, 2039–2047.

    Article  CAS  PubMed  Google Scholar 

  • Mengiste, T. (2012). Plant immunity to necrotrophs. Annual Review of Phytopathology, 50, 267–294.

    Article  CAS  PubMed  Google Scholar 

  • Okubara, P. A., Dickman, M. B., & Blechl, A. E. (2014). Molecular and genetic aspects of controlling the soilborne necrotrophic pathogens Rhizoctonia and Pythium. Plant Science, 228, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, M., Pereira, C., Bessa, C., Araujo, R., & Saraiva, L. (2016). Hydrogen peroxide-induced secondary necrosis in conidia of aspergillus fumigates. Canadian Journal of Microbiology, 62, 95–101.

    Article  CAS  PubMed  Google Scholar 

  • Pekkarinen, A. I., & Jones, B. L. (2003). Purification and identification of barley (Hordeum vulgare L.) proteins that inhibit the alkaline serine proteinases of fusarium culmorum. Journal of Agricultural and Food Chemistry, 51(6), 1710–1717.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, M. (1991). Seed storage proteins: The enzyme inhibitors. Methods Plant Biochem., 5, 295–305.

    Google Scholar 

  • Ryan, C. A. (1990). Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Annual Review of Phytopathology, 28, 425–449.

    Article  CAS  Google Scholar 

  • Schmidt, C. S., Leclerque, A., Pfeiffer, T., Goessling, J. W., Orlik, M., Jamshidi, B., Saar, K., Sellmann, J., Siepe, I., & Koch, E. (2020). Pathogenicity of Pythium species to maize. European Journal of Plant Pathology, 158, 335–347.

    Article  Google Scholar 

  • Schroeder, K. L., Martin, F. N., de Cock, A. W. A. M., Lévesque, C. A., Spies, C. F. J., Okubara, P. A., & Paulitz, T. C. (2013). Molecular detection and quantification of Pythium species: Evolving taxonomy, new tools, and challenges. Plant Disease, 97(1), 4–20.

    Article  CAS  PubMed  Google Scholar 

  • Shamsi, T. N., Parveen, R., Amir, M., Baig, M. A., Qureshi, M. I., Ali, S., & Fatima, S. (2016). Allium sativum protease inhibitor: A novel Kunitz trypsin inhibitor from garlic is a new comrade of the serpin family. PLoS One, 11(11), e0165572.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharmila, R., Aswati Nair, R., & Princy, P. (2020). Antimicrobial peptide (AMP) from Zingiber zerumbet rhizomes with inhibitory effect on Pythium myriotylum secretory proteases and zoospore viability. World J. of Microbiol. and Biotechnol., 36, 77.

    Article  Google Scholar 

  • Stirling, G.R., Turaganivalu, U., Stirling, A.M., Lomavatu, M. F, & Smith, M.K. (2009). Rhizome rot of ginger (Zingiber officinale) caused by Pythium myriotylum in Fiji and Australia. Australasian Plant Pathology 38, 453–460.

  • Terras, F. R. G., Eggermont, K., Kovaleva, V., Raikhel, N. V., Torrekens, S., Van Leuven, F., Osborn, R. W., Kester, A., Rees, S. B., Vanderleyden, J., Cammue, B. P. A., & Broekaert, W. F. (1995). Small cysteine-rich antifungal proteins from radish. Their role in host defense. Plant Cell, 7, 573–588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—Powdery mildew interaction. The Plant Journal, 11(6), 1187–1194.

    Article  CAS  Google Scholar 

  • Valueva, T. A., & Mosolov, V. V. (2004). Role of inhibitors of proteolytic enzymes in plant defense against phytopathogenic microorganisms. Biochemistry (Moscow), 69, 1305–1309.

    Article  CAS  Google Scholar 

  • Valueva, T.A., Revina, T.A., Gvozdeva, E.L., Gerasimova, N.G., & Ozeretskovskaya .O.L. (2003) Role of protease inhibitors in potato protection. Russian J. Bioorg. Chem. 29(5), 454–458.

  • Volpicella, M., Leoni, C., Costanza, A., De Leo, F., Gallerani, R., & Ceci, L. R. (2011). Cystatins, serpins and other families of protease inhibitors in plants. Current Protein & Peptide Science, 12(5), 386–398.

    Article  CAS  Google Scholar 

  • Yarullina, L. G., Akhatova, A. R., & Kasimova, R. I. (2016). Hydrolytic enzymes and their proteinaceous inhibitors in regulation of plant–pathogen interactions. Russian Journal of Plant Physiology, 63, 193–203.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SR acknowledges the Research Fellowship received from Ministry of Human Resource and Development (MHRD), Government of India. Authors are grateful to NITC and CUK for the research facilities extended.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

ARN conceived and designed the experiments. SR performed the experiments. SR and ARN analyzed the data. ARN wrote and revised the paper.

Corresponding author

Correspondence to R. Aswati Nair.

Ethics declarations

Ethical statement

No animal or guman participants were used in present study.

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, S., Nair, R.A. Anti-Pythium activity of ZzAMP, a serine protease inhibitor (SPI) from Zingiber zerumbet rhizome, mediated by zoospore binding and oxidative stress. Eur J Plant Pathol 164, 429–437 (2022). https://doi.org/10.1007/s10658-022-02549-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-022-02549-z

Keywords

Navigation