Skip to main content

In vitro and in vivo toxicity of nano chitosan against Curvularia lunata, the causal microorganism of fruit rot and blight, a new disease of olive (O. europaea L.)

Abstract

During 2019, fruit blight and rot symptoms were observed on olive (O. europaea L.) fruits on trees grown in the Experimental Farm, Faculty of Agriculture, Sohag University, Egypt. Fungal isolates recovered from symptomatic fruits were identified as Curvularia lunata (Walker) Boedijn (two isolates) and A. alternata (Fr.) Keissl. (one isolate). Koch’s postulates were fulfilled by a pathogenicity test conducted in vitro on olive fruits wounded before inoculation with fungal isolates and incubation at 25 ± 0.2 °C in a moist chamber for a week. During incubation, we observed the development of blight and rot symptoms on fruits inoculated with both isolates of C. lunata, similar to the natural symptoms described. Conversely, A. alternata was nonpathogenic to olive fruits. PCR amplification using the specific P1 and P2 primers to C. lunata based on the Clg2p Ras protein gene sequences resulted in approx. 870 base pairs for all DNA of C. lunata analyzed, confirming the identification of C. lunata. In vitro, both chitosan nano and non-nano scale effectively inhibited mycelial growth by reducing linear mycelium and biomass and sporulation of C. lunata. In vivo, chitosan nanoscale at 2.0 mg mL−1 greatly reduced the infection and the lesion diameter of C. lunata inoculated fruits after a week and effectively induced defense-related enzyme activity of PO, PPO, and PAL. This report is the first recording of fruit blight and rots on olive caused by C. lunata, as a new disease. Also, we report the in vitro and vivo toxicity of nanoparticles of chitosan as a natural elicitor, effectively inducing defense-related enzymes against C. lunata.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • AbdElfatah, H.-A. S., Sallam, N. M. A., Mohamed, M. S., Bagy, K., & Hadeel, M. M. (2021). Curvularia lunata as new causal pathogen of tomato early blight disease in Egypt. Molecular Biology Reports. First Online, 48, 3001–3006. https://doi.org/10.1007/s11033-021-06254-8

    Article  CAS  PubMed  Google Scholar 

  • Achbani, E.-H., Benbouazza, A., & Allal, D. (2013). First report of olive anthracnose, caused by Colletotrichum gloeosporioides, in Morocco. Atlas Journal of Biology, 2(3), 172–175.

    Google Scholar 

  • Aktar, M., & Shamsi, S. (2016). Report on blight of Tagetes spp. caused by Curvularia lunata (Wakker) Boedijn. Bangladesh Journal of Botany, 45(1), 167–173.

    Google Scholar 

  • Alex, D., Li, D., Calderone, R., & Peters, S. M. (2013). Identification of Curvularia lunata by polymerase chain reaction in a case of fungal endophthalmitis. Medical Mycology Case Reports, 2, 137–140.

    PubMed  PubMed Central  Google Scholar 

  • Al-Hetar, M. Y., Zaintal, A. M. A., Sariah, M., & Wong, M. (2011). Antifungal activity of chitosan against fusarium oxysporum f.sp. cubense. Journal of Applied Polymer Science, 120, 2434–2439.

    CAS  Google Scholar 

  • Avasthi, S., Gautam, A. K., & Bhadauria, R. (2015). Short communication: Occurrence of leaf spot diseases on Aloe vera (L.) Burm.F. caused by Curvularia species from Madhya Pradesh, India. Biodiversitas, 16(1), 79–83.

    Google Scholar 

  • Barilli, E., Prats, E., & Rubiales, D. (2010). Benzothiadiazole and BABA improuve resistance to Uromyces pisi (Pers.) Wint. In Pisum sativum L. with an enhancement of enzymatic activities and total phenolic content. European Journal of Plant Pathology, 128, 483–493.

    CAS  Google Scholar 

  • Bautista-Baños, S., Hernández-López, M., Bosquez-Molina, E., & Wilson, C. L. (2003). Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection, 22(9), 1087–1092.

    Google Scholar 

  • Bautista-Baños, S., Hernández-López, M., & Bosquez-Molina, E. (2004). Growth inhibition of selected fungi by chitosan and plant extracts. Mexican Journal of Phytopathology, 22, 178–186.

    Google Scholar 

  • Carlson, R., Taffs, R., Davison, W., & Stewart, P. (2008). Anti-biofilm properties of chitosan-coated surfaces. Journal of Biomaterials Science. Polymer Edition, 19, 1035–1046.

    CAS  PubMed  Google Scholar 

  • Chookhongkha, N., Sopondilok, T., & Photchanachai, S. (2013). Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. Acta Horticulturae, 973, 231–238.

    Google Scholar 

  • Chung, W. H., & Tsukiboshi, T. (2005). A new species of Curvularia from Japan. Mycotaxon, 91, 49–54.

    Google Scholar 

  • Cuervo-Parra, J. A., Romero-Cortes, T., Ortiz, Y. G., & Ramírez-Lepe, M. (2017). Isolation and molecular identification of Curvularia lunata/Cochliobolus lunatus causal agent of leaf spot disease of cocoa. TOPIC: Food Safety and Food Microbiology, 17, 829–833.

    Google Scholar 

  • de Oliveira, K. A. R., Berger, L. R. R., de Araújo, S. A., Câmara, M. P. S., & de Souza, E. L. (2017). Synergistic mixtures of chitosan and Mentha piperita L. essential oil to inhibit Colletotrichum species and anthracnose development in mango cultivar Tommy Atkins. Food Microbiology, 66, 96–103.

    PubMed  Google Scholar 

  • dos Santos, P. R. R., Leão, E. U., Aguiar, R. W., de Melo, M. P., & dos Santos, G. R. (2018). Morphological and molecular characterization of Curvularia lunata pathogenic to Andropogon grass. Bragantia, Campinas, 77(2), 326–332.

    Google Scholar 

  • El-Mohamedya, R. S. R., Abd El-Aziz, M. E., & Kamel, S. (2019). Antifungal activity of chitosan nanoparticles against some plant pathogenic fungi in vitro. AgricEngInt: CIGR Journal, 21(4), 201–209.

  • Eweis, M., Elkholy, S. S., & Elsabee, M. Z. (2006). Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. International Journal of Biological Macromolecules, 38(1), 1–8.

    CAS  PubMed  Google Scholar 

  • FAOSTAT. (2021). Rome, Italy: Food and Agriculture Organization (FAO). Available from: http://www.fao.org/faostat/en/#data/QC. Accessed 18 March 2021.

  • Flores-Flores, R., Ve-azquez-del Valle, M. G., Le-on-Rodriguez, R., Flores-Moctezuma, H. E., & Hern-andez-Lauzardo, A. N. (2013). Identification of fungal species associated with cladode spot of prickly pear and their sensitivity to chitosan. Journal of Phytopathology, 161, 544–552.

    CAS  Google Scholar 

  • Freddo, Á. R., Mazaro, S. M., Brun, E. J., & Wagner, J. A. (2014). Chitosan as fungistatic mycelial growth of Rhizoctonia solani Kuhn. Ciencia Rural, 44(1), 1–4.

    Google Scholar 

  • Gilman, J. C. (2012). A manual of soil Fungi. Biotech Books.

    Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). Willey.

    Google Scholar 

  • Hirano, S., & Nagao, N. (1989). Effects of chitosan, pectic acid, lysozyme, chitinase on the growth of several phytopathogens. Agricultural and Biological Chemistry, 53(11), 3065–3066.

    CAS  Google Scholar 

  • Hou, J. M., Ma, B. C., Zuo, Y. H., Guo, L. L., Gao, S. G., Wang, Y. Y., & Liu, T. (2012). Rapid and sensitive detection of Curvularia lunata associated with maize leaf spot based on its Clg2p gene using semi-nested PCR. Letters in Applied Microbiology, 56, 245–250.

    Google Scholar 

  • Iftikhar, S., Shahid, A. A., Nawaz, K., & Ali, S. W. (2016). First report of Curvularia lunata causing fruit rot of tomato (Lycopersicum esculentum) in Pakistan. Plant Disease, 100(5), 1013.

    Google Scholar 

  • Joseph, L. M., Tan, T. K., & Wong, S. M. (1998). Antifungal effect of hydrogen peroxide and peroxidase of spore germination and mycelial growth of Pseudocercospora species. Canadian Journal of Botany, 76, 2119–2124.

    CAS  Google Scholar 

  • Kamaluddeen, S. S., & Lal, A. A. (2013). A new blight disease of rice caused by Curvularia lunata from Uttar Pradesh. International Journal of Agricultural Science, 3(5), 13–16.

    Google Scholar 

  • Kashyap, P. L., Xiang, X., & Heiden, P. (2015). Chitosan nanoparticle based delivery system for sustainable agriculture. International Journal of Biological Macromolecules, 77, 36–51.

    CAS  PubMed  Google Scholar 

  • Khasanov, B. A., Shavarina, Z. A., & Vypritskaya, A. A. (1990). Characteristics of Curvularia Boedijn fungal and their pathogenicity in cereal crops. Mikologiya i Fitopatologiya, 24, 166–173.

    Google Scholar 

  • Khatun, S., Cakilcioglu, U., Chakrabarti, M., Ojha, S., & Chatterjee, N. C. (2011). Biochemical defense against die-back disease of a traditional medicinal plant Mimusops elengi Linn. European Journal of Medicinal Plants, 1, 40–49.

    Google Scholar 

  • Kusai, N. A., Azmi, M. M. Z., Zulkifly, S., Yusof, M. T., & Zainudin, N. A. (2016). Morphological and molecular characterization of Curvularia and related species associated with leaf spot disease of rice in peninsular Malaysia. Rendiconti Lincei: Scienze Fisiche e Naturali, 27, 205–214.

    Google Scholar 

  • Li, J. T., Fu, J. F., Yan, X. R., Li, H. C., & Zhou, R. J. (2006). Analysis of temporal dynamics of Curvularia leaf spot of maize (Curvularia lunata) epidemic and yield loss. Journal of Shenyang Agricultural University, 6, 835–389.

    Google Scholar 

  • Li, K., Xing, R., Liu, S., Qin, Y., Meng, X., & Li, P. (2012). Microwave-assisted degradation of chitosan for a possible use in inhibiting crop pathogenic fungi. International Journal of Biological Macromolecules, 51, 767–773.

    CAS  PubMed  Google Scholar 

  • Liu, T., Liu, L. X., Jiang, X., Huang, X. L., & Chen, J. (2009). Anew furanoid toxin produced by Curvularia lunata, the causal agent of maize Curvularia leaf spot. Canadian Journal of Plant Pathology, 31, 211–219.

    Google Scholar 

  • Liu, T., Liu, L. X., Jiang, X., Hou, J., Fu, K., Zhou, F., & Chen, J. (2010). Agrobacterium-mediated transformation as a useful tool for molecular genetic study of the phytopathogen Curvularia lunata. European Journal of Plant Pathology, 126, 363–371.

    CAS  Google Scholar 

  • Liu, H., Tian, W., Li, B., Wu, G., Ibrahim, M., Tao, Z., Wang, Y., Xie, G., Li, H., & Sun, G. (2012). Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnology Letters, 34(12), 2291–2298.

    CAS  PubMed  Google Scholar 

  • Maxwell, D. P., & Bateman, D. F. (1967). Changes in the activity of some oxidases in extracts of Rhizoctonia infected bean hypocotyls in relation to lesion maturation. Phytopathology, 57, 132–136.

    CAS  Google Scholar 

  • Menaria, D. (2011). Patho-physiological studies on Curvularia fruit rot of bell pepper. M.Sci. Thesis, Plant Pathology Department, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Rajasthan, India.

  • Meng, X., Yang, L., Kennedy, J. F., & Tian, S. (2010). Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers, 81(1), 70–75.

    CAS  Google Scholar 

  • Mohammed, S. R., Zeitar, E. M., & Eskov, I. D. (2019). Inhibition of mycelial growth of Rhizoctonia solani by chitosan in vitro and in vivo. The Open Agriculture Journal, 13, 156–161.

    CAS  Google Scholar 

  • Moharam, M. H. A. (2013). Induction of defence-related biochemical changes in okra leaves to powdery mildew disease by several plant-derived agents. Archives of Phytopathology and Plant Protection, 46(14), 1667–1682.

    CAS  Google Scholar 

  • Moharam, M. H. A., Leclerque, A., & Koch, E. (2012). Cultural characteristics of Sporisorium sorghi and detection of the pathogen in plant tissue by microscopy and polymerase chain reaction. Phytoparasitica, 40, 475–483.

    Google Scholar 

  • Pabón-Baquero, D., Velázquez-del Valle, M. G., Evangelista-Lozano, S., León-Rodriguez, R., & Hernández-Lauzardo, A. N. (2015). Chitosan effects on phytopathogenic fungi and seed germination of Jatropha curcas L. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 21(3), 241–253.

    Google Scholar 

  • Pichyangkura, R., & Chadchawan, S. (2015). Biostimulant activity of chitosan in horticulture. Scientia Horticulturae, 196, 49–65.

    CAS  Google Scholar 

  • Qin, Y., Liu, S., Xing, R., Yu, H., Li, K., Meng, R., et al. (2012). Synthesis and characterization of dithiocarbamate chitosan derivatives with enhanced antifungal activity. Carbohydrate Polymers, 89, 388–393.

    CAS  PubMed  Google Scholar 

  • Qing, W., Zuo, J.-H., Qian, W., Yang, N., & Gao, L. P. (2015). Inhibitory effect of chitosan on growth of the fungal phytopathogen, Sclerotinia sclerotiorum, and Sclerotinia rot of carrot. Journal of Integrative Agriculture, 14(4), 691–697.

    Google Scholar 

  • Rižner, T. L., & Wheeler, M. H. (2003). Melanin biosynthesis in the fungus Curvularia lunata (teleomorph: Cochilobolus lunatus). Candian Journal of Microbiology, 49, 110–119.

    Google Scholar 

  • Rodriguez, A. F., Menėndz, D. C., Delgado, E. O., Diaz, O. L., & Pino, J. C. (2007). Evaluation of chitosan as an inhibitor of soil-borne pathogens and as an elicitor of defence markers and resistance in tobacco plants. Spanish Journal of Agricultural Research, 5(4), 533–541.

    Google Scholar 

  • Saharan, V., Mehrotra, A., Khatik, R., Rawal, P., Sharma, S. S., & Pal, A. (2013). Synthesis of chitosan-based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules, 62, 677–683.

    CAS  PubMed  Google Scholar 

  • Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A., Raliya, R., & Biswas, P. (2015). Synthesis and in vitro antifungal efficacy of cu-chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules, 75, 346–353.

    CAS  PubMed  Google Scholar 

  • Sanei, S. J., Razavi, S. E., & Ghanbarnia, K. (2011). Fungi on plants and plant products in Iran. Peik-e-Reihan Publication 680 pp. In Press.

    Google Scholar 

  • Sathiyabama, M., & Parthasarathy, R. (2016). Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydrate Polymers, 151, 321–325.

    CAS  PubMed  Google Scholar 

  • Shukla, S. K., Mishra, A. K., Arotiba, O. A., & Mamba, B. B. (2013). Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules, 59, 46–58.

    CAS  PubMed  Google Scholar 

  • Şirin, S., Aydaş, S. B., & Aslım, B. (2016). Biochemical evaluation of phenylalanine ammonia-lyase from endemic plant Cyathobasis fruticulosa (Bunge) Aellen. For the dietary treatment of phenylketonuria. Food Technology and Biotechnology, 54(3), 296–303.

    PubMed  PubMed Central  Google Scholar 

  • Sivanesan, A. (1987). Graminicolous species of Bipolaris, Curvularia, Drechslera, Exerohitum and their teleomorphs. Mycological Papers, 158, 117.

    Google Scholar 

  • Sotelo-Boyás, M. E., Bautista-Baños, S., Correa-Pacheco, Z. N., Jiménez-Aparicio, A., & Sivakumar, D. (2016). Biological activity of chitosan nanoparticle against pathogenic fungi and bacteria. In S. Bautista-Baños, G. Romanazzi, & A. Jiménez-Aparicio (Eds.), Chitosan in the Preservation of Agricultural Commodities (pp. 339–349). Academic Press Imprint. https://doi.org/10.1016/C2014-0-03033-X

    Chapter  Google Scholar 

  • Tous, J., & Romero, A. (1994). Charactersticas quimico- sensorial esdelosaceties de olive Arbequina obtenidos en distinazonas de Spana. GrasaAceities, 48(6), 415–424.

    Google Scholar 

  • Úrbez-Torres, J. R., Peduto, F., Vossen, P. M., Krueger, W. H., & Gubler, W. D. (2013). Olive twig and branch dieback: Etiology, incidence, and distribution in California. Plant Disease, 97, 231–244.

    PubMed  Google Scholar 

  • Xuan, N., Jin-Xin, G., Chuan-jin, Y., Meng, W., Jia-nan, S., Ya-Qian, L., & Jie, C. (2018). MAPKs and acetyl-CoA are associated with Curvularia lunata pathogenicity and toxin production in maize. Journal of Integrative Agriculture, 17(1), 139–148.

    Google Scholar 

  • Yago, J. I., Roh, J. H., Bae, S. D., Yoon, Y. N., Kim, H. J., & Nam, M. H. (2011). The effect of seed-borne mycoflora from sorghum and foxtail millet seeds on germination and disease transmission. Mycology, 39, 206–218.

    Google Scholar 

  • Yang, B., Li, Y. C., Han, R. F., & Ge, Y. H. (2008). Postharvest chitosan treatment induces resistance in potato against fusarium sulphureum. Agricultural Sciences in China, 7(5), 615–621.

    Google Scholar 

  • Youssef, A. M., Abdel-Aziz, M. E., El-Sayed, E. S. A., Abdel-Aziz, M. S., Abd El-Hakim, A. A., Kamel, S., & Turky, G. (2018). Morphological, electrical & antibacterial properties of trilayered Cs/PAA/PPy bionanocomposites hydrogel based on Fe3O4-NPs. Carbohydrate Polymers, 196, 483–493.

    CAS  PubMed  Google Scholar 

  • Zahid, N., Alderson, P., Ali, A., Maqbool, M., & Manickam, S. (2013). In vitro control of Colletotrichum gloesporides by using chitosan loaded nanoemulsion. Acta Horticulturae, 1012, 769–774.

    Google Scholar 

Download references

Acknowledgments

The author is thankful to all Experimental Farm members, the Faculty of Agriculture, Sohag University, to support the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moustafa H. A. Moharam.

Ethics declarations

Conflict of interest

The authors have not any actual or potential conflict of interest.

Ethical responsibility

This manuscript is original research, and it is not submitted in whole or in parts to another journal for publication.

Informed consent

The authors have reviewed the whole manuscript and approved the final version of the manuscript before submission.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, M.D.A., Moharam, M.H.A. & Ahmed, H.A.M. In vitro and in vivo toxicity of nano chitosan against Curvularia lunata, the causal microorganism of fruit rot and blight, a new disease of olive (O. europaea L.). Eur J Plant Pathol 161, 881–894 (2021). https://doi.org/10.1007/s10658-021-02371-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02371-z

Keywords