Abstract
Bud rot is the most critical disease in Colombian oil palm crops. In addition to implementing current management strategies, it is necessary to search for alternatives to control this disease. This work aimed to assess in vitro the antagonistic activity of 12 isolates of Trichoderma spp. (seven native, three commercial and two donated) against one isolate of Phytophthora palmivora, the causal agent of bud rot. To determine the potential of these isolates in biological control, their competitive abilities, mycoparasitic interactions and the antibiotic properties of their metabolites against P. palmivora in vitro and detached leaf tissue were assessed. The seven native isolates were molecularly identified by partial sequencing of the ITS region and TEF1. As result, in the mycoparasitism tests, coiling, entangling of pathogen hyphae, and colonization of pathogen sporangia were observed. Also, the strain CPTrZC-02 displayed the highest frequency of interactions with pathogen hyphae (55%) and sporangia (63%). For the volatile metabolite activity, inhibition of the diametrical growth of P. palmivora was found, with percentages between 12.8 and 32.2%. For the non-volatile metabolites, the development of P. palmivora was limited, with inhibition percentages between 81 and 98% for isolates CPTrZC-05, CPTrZC-02 and CPTrZC-04. The crude extract from CPTrZC-09 inhibited the development of pathogen lesions at a rate of 100%. The native isolates were identified as Trichoderma reesei (CPTrZC-04), Trichoderma harzianum (CPTrZC-09), Trichoderma asperellum (CPTrZC-05 and CPTrZC-12), and Trichoderma asperelloides (CPTrZC-01, CPTrZC-10, and CPTrZC-11). The isolates T. reesei, T. harzianum, and T. asperelloides, due to their properties, are promising for further field assessments as part of a comprehensive management plan for bud rot in Colombia.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ahmed, A. S., Pérez Sánchez, C., & Candela, M. E. (2000). Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. European Journal of Plant Pathology, 106(9), 817–824. https://doi.org/10.1023/A:1008780022925.
Amemiya, T. (1985). Advanced Econometrics. In Advanced Econometrics. Economica (Vol. 54). Cambridge: Harvard University Press. https://doi.org/10.2307/2554459.
Angel, L. P. L., Yusof, M. T., Ismail, I. S., Ping, B. T. Y., Mohamed Azni, I. N. A., Kamarudin, N. H., & Sundram, S. (2016). An in vitro study of the antifungal activity of Trichoderma virens 7b and a profile of its non-polar antifungal components released against Ganoderma boninense. Journal of Microbiology, 54(11), 732–744. https://doi.org/10.1007/s12275-016-6304-4.
Arnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., & Herre, E. A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15649–15654. https://doi.org/10.1073/pnas.2533483100.
Bae, H., Roberts, D. P., Lim, H. S., Strem, M. D., Park, S. C., Ryu, C. M., Melnick, R. L., & Bailey, B. A. (2011). Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Molecular Plant-Microbe Interactions, 24(3), 336–351. https://doi.org/10.1094/MPMI-09-10-0221.
Bae, S. J., Mohanta, T. K., Chung, J. Y., Ryu, M., Park, G., Shim, S., Hong, S. B., Seo, H., Bae, D. W., Bae, I., Kim, J. J., & Bae, H. (2016). Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control, 92, 128–138. https://doi.org/10.1016/j.biocontrol.2015.10.005.
Bailey, B. A., Bae, H., Strem, M. D., Roberts, D. P., Thomas, S. E., Crozier, J., Samuels, G. J., Choi, I. Y., & Holmes, K. A. (2006). Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta, 224(6), 1449–1464. https://doi.org/10.1007/s00425-006-0314-0.
Calvo-Araya, J., Rivera-Coto, G., Orozco-Cayasso, S., & Orozco-Rodríguez, R. (2012). Aislamiento y evaluación in vitro de antagonistas de Botrytis cinerea en mora. Agronomía mesoamericana, 23(2), 225–231. https://doi.org/10.15517/am.v23i2.6481.
Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3), 553–556. https://doi.org/10.2307/3761358.
Cholango, L. P. (2009). Seleccion de cepas de Trichoderma sp. in vitro, para el control de problemas radículares en flores de verano. Checa-Ecuador. Retrieved from http://repositorio.espe.edu.ec/handle/21000/2599
De Franqueville, H. (2003). Oil palm bud rot in Latin America. Experimental Agriculture, 39, 225–240. https://doi.org/10.1017/S0014479703001315.
De Oliveira, V. L., & Bellei, M. de M., & Borges, A. C. (1984). Control of white rot of garlic by antagonistic fungi under controlled environmental conditions. Canadian Journal of Microbiology, 30(7), 884–889. https://doi.org/10.1139/m84-138.
Do Nascimento Silva, R., Steindorff, A. S., Ulhoa, C. J., & Félix, C. R. (2009). Involvement of G-alpha protein GNA3 in production of cell wall-degrading enzymes by Trichoderma reesei (Hypocrea jecorina) during mycoparasitism against Pythium ultimum. Biotechnology Letters, 31(4), 531–536. https://doi.org/10.1007/s10529-008-9900-5.
Domingues, M. V. P. F., de Moura, K. E., Salomão, D., Elias, L. M., & Patricio, F. R. A. (2016). Effect of temperature on mycelial growth of Trichoderma, Sclerotinia minor and S. sclerotiorum, as well as on mycoparasitism. Summa Phytopathologica, 42(3), 222–227. https://doi.org/10.1590/0100-5405/2146.
Drenth, A., & Sendall, B. (2001). Practical guide to detection and identification of Phytophthora. (CRC, Ed.)CRC for tropical plant protection (Vol. 1). Brisbane.
Drenth, A., Torres, G., & Martinez, G. (2013). Phytophthora palmivora, la causa de la Pudrición del cogollo en la palma de aceite. Palmas, 34, 87–94.
Druzhinina, I. S., Komoń-Zelazowska, M., Ismaiel, A., Jaklitsch, W., Mullaw, T., Samuels, G. J., & Kubicek, C. P. (2012). Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma. Fungal Genetics and Biology, 49(5), 358–368. https://doi.org/10.1016/j.fgb.2012.02.004.
Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340.
El-Komy, M. H., Saleh, A. A., Eranthodi, A., & Molan, Y. Y. (2015). Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato fusarium wilt. Plant Pathology Journal, 31(1), 50–60. https://doi.org/10.5423/PPJ.OA.09.2014.0087.
Elad, Y. (2000). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19(8–10), 709–714. https://doi.org/10.1016/S0261-2194(00)00094-6.
Erwin, D., & Ribeiro, O. (1996). Phytophthora diseases worldwide. St. Paul, Minnesota: American Phytopathological Society Press.
Ezziyyani, M., Requena, M. E., Egea-Gilabert, C., & Candela, M. E. (2007). Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. Journal of Phytopathology, 155(6), 342–349. https://doi.org/10.1111/j.1439-0434.2007.01237.x.
Galarza, L., Akagi, Y., Takao, K., Kim, C. S., Maekawa, N., Itai, A., Peralta, E., Santos, E., & Kodama, M. (2015). Characterization of Trichoderma species isolated in Ecuador and their antagonistic activities against phytopathogenic fungi from Ecuador and Japan. Journal of General Plant Pathology, 81(3), 201–210. https://doi.org/10.1007/s10327-015-0587-x.
Gupta, V. K., Steindorff, A. S., Graciano de Paula, R., Silva-Rocha, R., Mach-Aigner, A. R., Mach, R. L., & Silva, R. N. (2016). The post-genomic era of Trichoderma reesei: What’s next? Trends in Biotechnology, 34(12), 970–982. https://doi.org/10.1016/j.tibtech.2016.06.003.
Hall, T. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic acids symposium series, 41, 95–98. https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29.
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species - opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56. https://doi.org/10.1038/nrmicro797.
Hoyos-Carvajal, L., Orduz, S., & Bissett, J. (2009). Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genetics and Biology, 46(9), 615–631. https://doi.org/10.1016/j.fgb.2009.04.006.
Jiang, H., Zhang, L., & Zhang, J. ze, Ojaghian, M. R., & Hyde, K. D. (2016). Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro. Journal of Zhejiang University: Science B, 17(4), 271–281. https://doi.org/10.1631/jzus.B1500243.
Kredics, L., Antal, Z., Dóczi, I., Manczinger, L., Kevei, F., & Nagy, E. (2003). Clinical importance of the genus Trichoderma: A review. Acta Microbiologica et Immunologica Hungarica, 50(2–3), 105–117. https://doi.org/10.1556/AMicr.50.2003.2-3.1.
Kubicek, C. P. (2013). Systems biological approaches towards understanding cellulase production by Trichoderma reesei. Journal of Biotechnology, 163(2), 133–142. https://doi.org/10.1016/j.jbiotec.2012.05.020.
Lo, C. T., Nelson, E. B., Hayes, C. K., & Harman, G. E. (1998). Ecological studies of transformed Trichoderma harzianum strain 1295-22 in the rhizosphere and on the phylloplane of creeping bentgrass. Phytopathology, 88(2), 129–136. https://doi.org/10.1094/PHYTO.1998.88.2.129.
López-Herrera, C. J., Pérez-Jiménez, R. M., Llobel, A., Monte-Vázquez, E., & Zea-Bonilla, T. (1999). Estudios in vivo de Trichoderma como agente de biocontrol contra Phytophthora cinnamomi y Rosellinia necatrix en aguacate. Revista Chapingo Serie Horticultura, 5, 261–265.
Martínez, L. C., Plata-Rueda, A., Rodríguez-Dimaté, F., Campos, J. M., Dos Santos, V. C., Rolim, G. D. S., et al. (2019). Exposure to insecticides reduces populations of Rhynchophorus palmarum in oil palm plantations with bud rot disease. Insects, 10(4), 1–12. https://doi.org/10.3390/insects10040111.
Montes-Bazurto, L. G., & Bustillo-Pardey, A. E. (2019). Trampeo como estrategia de manejo de Rhynchophorus palmarum (Coleoptera: Dryophthoridae). In Congreso Sociedad Colombiana de Entomología, Memorias & resúmenes. 46 Congreso Socolen. (pp. 243–249). Medellin-Colombia: Socolen. http://www.socolen.org.co/images/stories/pdf/46_congreso.pdf
Mousumi Das, M., Haridas, M., & Sabu, A. (2019). Biological control of black pepper and ginger pathogens, fusarium oxysporum, Rhizoctonia solani and Phytophthora capsici, using Trichoderma spp. Biocatalysis and Agricultural Biotechnology, 17, 177–183. https://doi.org/10.1016/j.bcab.2018.11.021.
O’Donnell, K. O., Cigelnik, E., & Nirenberg, H. I. (1998). Molecular systematics and Phylogeography of the Gibberella fujikuroi species complex. Mycologia, 90(3), 465–493. https://doi.org/10.2307/3761407.
Patil, A., Patil, S., & Paikrao, H. (2016). Trichoderma secondary metabolites: Their biochemistry and possible role in disease management. Microbial-mediated induced systemic resistance in plants, 69–102. https://doi.org/10.1007/978-981-10-0388-2.
Rahman, M. A., Begum, M. F., & Alam, M. F. (2009). Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology, 37(4), 277–285. https://doi.org/10.4489/myco.2009.37.4.277.
Ramírez-Cariño, H. F., Guadarrama-Mendoza, P. C., Sánchez-López, V., Cuervo-Parra, J. A., Ramírez-Reyes, T., Dunlap, C. A., & Valadez-Blanco, R. (2020). Biocontrol of Alternaria alternata and fusarium oxysporum by Trichoderma asperelloides and Bacillus paralicheniformis in tomato plants. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 113(9), 1247–1261. https://doi.org/10.1007/s10482-020-01433-2.
Raza, W., Yousaf, S., Uddin Rajer, F., Faheem, M., & Yameen, M. (2013). Volatile and non-volatile antifungal compounds produced by Trichoderma harzianum SQR-T037 suppressed the growth of fusarium oxysporum f. sp. niveum. Science Letters, 1(1), 21–24.
RCoreTeam, R. (2008). R: A language and environment for statistical computing. http://www.R-project.org/ (Vol. 2).
Samuels, G. J. (1996). Trichoderma: A review of biology and systematics of the genus. Mycological Research, 100(8), 923–935. https://doi.org/10.1016/S0953-7562(96)80043-8.
Samuels, G. J. (2006). Trichoderma: Systematics, the sexual state, and ecology. Phytopathology, 96(2), 195–206. https://doi.org/10.1094/PHYTO-96-0195.
Samuels, G. J., Ismaiel, A., Bon, M. C., De Respinis, S., & Petrini, O. (2010). Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia, 102(4), 944–966. https://doi.org/10.3852/09-243.
Sanz, J. I. (2016). Pudrición del cogollo: enfrentamiento integral contra un enemigo letal. P. palmivora. Palmas, 37, 109–114.
Sarria, G., Martínez, G., Varon, F., Drenth, A., & Guest, D. (2015). Histopathological studies of the process of Phytophthora palmivora infection in oil palm. European Journal of Plant Pathology, 145(1), 39–51. https://doi.org/10.1007/s10658-015-0810-9.
Sarria, G., Martínez, G., Varón, F., Drenth, A., & Guest, D. (2013). Nuevas evidencias del cumplimiento de los Postulados de Koch en el estudio de las relaciones entre Phytophthora palmivora y la Pudrición del cogollo (PC) de la palma de aceite. Palmas, 34(4), 73–83.
Sarria, G., Torres, G., Aya, H., Ariza, J., Rodríguez, J., Vélez, D., et al. (2008). Microorganismos asociados a la Pudrición del cogollo de la Palma Palma de aceite y su inoculación inoculación en palmas de vivero. Palmas, 29, 19–30.
Sarria, G., Mestizo, Y., Betancourt, F., Garcia, A., Varon, F., & Becerra, J. (2016). Pudricion del cogollo: avances, retos y oportunidades en el manejo integrado de esta enfermedad. Palmas, 37(4), 91–107.
Sawant, I. S., Wadkar, P. N., Ghule, S. B., Rajguru, Y. R., Salunkhe, V. P., & Sawant, S. D. (2017). Enhanced biological control of powdery mildew in vineyards by integrating a strain of Trichoderma afroharzianum with Sulphur. Biological Control, 114, 133–143. https://doi.org/10.1016/j.biocontrol.2017.08.011.
Sharma, V., Salwan, R., Sharma, P. N., & Kanwar, S. S. (2017). Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: Universal yet host specific response. International Journal of Biological Macromolecules, 95, 72–79. https://doi.org/10.1016/j.ijbiomac.2016.11.042.
Shenoy, B. D., Jeewon, R., & Hyde, K. D. (2007). Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Diversity, 26, 1–54.
Smith, A., Beltrán, C. A., Kusunoki, M., Cotes, A. M., Motohashi, K., Kondo, T., & Deguchi, M. (2013). Diversity of soil-dwelling Trichoderma in Colombia and their potential as biocontrol agents against the phytopathogenic fungus Sclerotinia sclerotiorum (lib.) de Bary. Journal of General Plant Pathology, 79(1), 74–85. https://doi.org/10.1007/s10327-012-0419-1.
Sriwati, R., Melnick, R. L., Muarif, R., Strem, M. D., Samuels, G. J., & Bailey, B. A. (2015). Trichoderma from Aceh Sumatra reduce Phytophthora lesions on pods and cacao seedlings. Biological Control, 89, 33–41. https://doi.org/10.1016/j.biocontrol.2015.04.018.
Steyaert, J., Hicks, E., Janaki, K., Kandula, D., Alizadeh, H., Braithwaite, M., et al. (2016). Methods for the evaluation of the bioactivity and biocontrol potential of species of Trichoderma. In microbial-based biopesticides: Methods and protocols, methods in molecular biology (Vol. 1477, pp. 23–35). https://doi.org/10.1007/978-1-4939-6367-6.
Sumida, C. H., Daniel, J. F. S., Araujod, A. P. C. S., Peitl, D. C., Abreu, L. M., Dekker, R. F. H., & Canteri, M. G. (2018). Trichoderma asperelloides antagonism to nine Sclerotinia sclerotiorum strains and biological control of white mold disease in soybean plants. Biocontrol Science and Technology, 28(2), 142–156. https://doi.org/10.1080/09583157.2018.1430743.
Sunpapao, A., Chairin, T., & Ito, S. (2018). The biocontrol by Streptomyces and Trichoderma of leaf spot disease caused by Curvularia oryzae in oil palm seedlings. Biological Control, 123, 36–42. https://doi.org/10.1016/j.biocontrol.2018.04.017.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197.
Torres, G., Sarria, G., Martínez, G., Varon, F., Drenth, A., & Guest, D. (2016). Bud rot caused by Phytophthora palmivora : A destructive emerging disease of oil palm. Phytopathology, 106(4), 320–329. https://doi.org/10.1094/phyto-09-15-0243-rvw.
Torres, G., Sarria, G., Varón, F., Coffey, M. D., Elliott, M., & Martínez, G. (2010). First report of bud rot caused by Phytophthora palmivora on African oil palm in Colombia. Plant Disease, 94, 1163. https://doi.org/10.1094/PDIS-94-9-1163A.
Vargas, W. A., Mukherjee, P. K., Laughlin, D., Wiest, A., Moran-Diez, M. E., & Kenerley, C. M. (2014). Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology, 160, 2319–2330. https://doi.org/10.1099/mic.0.079210-0.
White, T., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols, a guide to methods and applications (pp. 315–322). New York: Academic Press Limited. https://doi.org/10.1016/B978-0-12-372180-8.50042-1.
Yeoh, K. A., Othman, A., Meon, S., Abdullah, F., & Ho, C. L. (2013). Sequence analysis and gene expression of putative oil palm chitinase and chitinase-like proteins in response to colonization of Ganoderma boninense and Trichoderma harzianum. Molecular Biology Reports, 40(1), 147–158. https://doi.org/10.1007/s11033-012-2043-8.
Zeilinger, S., Gruber, S., Bansal, R., & Mukherjee, P. K. (2016). Secondary metabolism in Trichoderma - chemistry meets genomics. Fungal Biology Reviews, 30(2), 74–90. https://doi.org/10.1016/j.fbr.2016.05.001.
Acknowledgments
The authors wish to thank Cenipalma, the Palm Oil Promotion Fund (FFP), administered by Fedepalma, for funding this work.
We thank Dres. Lilliana Hoyos from Universidad Nacional de Colombia and Bioprotection for the strains donated for this study and Bertha Lucia Castro and Anuar Morales for their assistance in reviewing the manuscript.
Funding
This study was supported by The Oil Palm Promotion Found FFP, administered by Fedepalma.
Author information
Authors and Affiliations
Contributions
GS, CM and YM planned and designed the study. GS, AG, CM and YM performed sequence assembly and evaluation tests. EM, SH performed the experimental design and data analysis. GS, CM, YM and FV wrote the manuscript, and all authors commented on previous versions of the manuscript. All authors revised the final manuscript.
Corresponding author
Ethics declarations
Ethical approval
This article does not contain any studies with human participants or animals performed by any authors.
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary Information
ESM 1
(PDF 931 kb)
Rights and permissions
About this article
Cite this article
SARRIA, G., GARCIA, A., MESTIZO, Y. et al. ANTAGONISTIC INTERACTIONS BETWEEN Trichoderma spp. AND Phytophthora palmivora (Butler) FROM OIL PALM IN COLOMBIA. Eur J Plant Pathol 161, 751–768 (2021). https://doi.org/10.1007/s10658-021-02363-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10658-021-02363-z


