Skip to main content
Log in

Risk assessment of Aphanomyces euteiches root rot disease: quantification of low inoculum densities in field soils using droplet digital PCR

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Aphanomyces euteiches Drechs is a pathogenic soil-borne oomycete that causes root rot of legumes, one of the most serious diseases affecting legume production worldwide. There is currently no registered pesticide and no available resistant pea cultivar. Avoidance of infested fields based on disease risk assessment prior to pea sowing remains the main method available to manage the disease, but time-consuming bioassays are required to assess disease severity on susceptible plants grown in field soil samples. Direct quantification of A. euteiches inoculum in the soil by targeting multicopy genomic sequences of the internal transcribed spacer 1 with a qPCR-based method has been proposed as a rapid alternative for disease prediction. However, the method lacks sensitivity to accurately quantify low inoculum levels from naturally infested fields. We developed a suitable methodology based on droplet digital PCR (ddPCR) to quantify low A. euteiches inoculum levels in naturally infested soils. The methodology was validated on 200 soil samples taken from four naturally infested fields in the main pea cropping area in the north of France. The comparative analysis of inoculum density and disease severity of the 50 samples within each of the four fields revealed a non-homogeneous distribution of the A. euteiches population; this explains why the disease is visible in the form of foci. A significant relationship between pea root rot disease severity determined by bioassays and A. euteiches inoculum density was highlighted, and a linear mixed model is proposed to predict disease severity from inoculum density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  • Abbo, E. O., & Irwin, J. A. G. (1990). Aphanomyces euteiches, a possible cause of poor lucerne establishment in the Lockyer Valley. Queensland Australian Journal of Experimental Agriculture, 30, 361–364. https://doi.org/10.1071/EA9900361.

    Article  Google Scholar 

  • Albers, C. N., Jensen, A., Baelum, J., & Jacobsen, C. S. (2013). Inhibition of DNA polymerases used in q-PCR by structurally different soil-derived humic substances. Geomicrobiololy Journal, 30, 675–681. https://doi.org/10.1080/01490451.2012.758193.

    Article  CAS  Google Scholar 

  • Almquist, C., Persson, L., Olsson, A., Sundstrom, J., & Jonsson, A. (2016). Disease risk assessment of sugar beet root rot using quantitative real-time PCR analysis of Aphanomyces cochlioides in naturally infested soil samples. European. Journal of Plant Pathology, 145, 731–742. https://doi.org/10.1007/s10658-016-0862-5.

    Article  CAS  Google Scholar 

  • Anees, M., Edel-Hermann, V., & Steinberg, C. (2010). Build up of patches caused by Rhizoctonia solani. Soil Biology and Biochemestry, 42, 1661–1672. https://doi.org/10.1016/j.soilbio.2010.05.013.

    Article  CAS  Google Scholar 

  • Barton, K. (2020). MuMIn: Multi-model inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn

  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  • Bodker, L., Leroul, N., & Smedegaard-Petersen, V. (1993). Influence of pea cropping history on disease severity and yield depression. Plant Disease, 77, 896–900.

    Article  Google Scholar 

  • Chan, M., & Close, R. (1987). Aphanomyces root rot of peas .1. Evaluation of methods for assessing inoculum density of Aphanomyces euteiches in soil. New Zealand Journal of Agricultural Research, 30, 213–217.

    Article  Google Scholar 

  • Chang, K. F., Hwang, S. F., Ahmed, H. U., Fu, H., Zhou, Q., Strelkov, S. E., & Turnbull, G. D. (2017). First report of Phytophthora sansomeana causing root rot in field pea in Alberta, Canada. Crop Protection, 101, 1–4. https://doi.org/10.1016/j.cropro.2017.07.008.

    Article  CAS  Google Scholar 

  • Cooke, D. E., Drenth, A., Duncan, J. M., Wagels, G., & Brasier, C. M. (2000). A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genetics and Biology, 30, 17–32. https://doi.org/10.1006/fgbi.2000.1202.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, J., & Hagedorn, D. (1962). Penetration and infection of pea roots by zoospores of Aphanomyces euteiches. Phytopathology, 52(8), 827–834.

    Google Scholar 

  • Debode, J., Van Poucke, K., Franca, S. C., Maes, M., Höfte, M., & Heungens, K. (2011). Detection of multiple Verticillium species in soil using density flotation and real-time polymerase chain reaction. Plant Disease, 95, 1571–1580. https://doi.org/10.1094/PDIS-04-11-0267.

    Article  CAS  PubMed  Google Scholar 

  • Delwiche, P., Grau, C., Holub, E., & Perry, J. (1987). Characterization of Aphanomyces euteiches isolates recovered from alfalfa in Wisconsin. Plant Disease, 71, 155–161. https://doi.org/10.1094/PD-71-0155.

    Article  Google Scholar 

  • Denis, J. A., Nectoux, J., Lamy, P.-J., Rouillac Le Sciellour, C., Guermouche, H., Alary, A. S., Kosmider, O., Sarafan-Vasseur, N., Jovelet, C., Busser, B., Nizard, P., Taly, V., & Fina, F. (2018). Development of digital PCR molecular tests for clinical practice: Principles, practical implementation and recommendations. Annales de Biologie Clinique (Paris), 76, 505–523. https://doi.org/10.1684/abc.2018.1372.

    Article  Google Scholar 

  • Desgroux, A., L’Anthoene, V., Roux-Duparque, M., Riviere, J. P., Aubert, G., Tayeh, N., Moussart, A., Mangin, P., Vetel, P., Piriou, C., McGee, R. J., Coyne, C. J., Burstin, J., Baranger, A., Manzanares-Dauleux, M., Bourion, V., & Pilet-Nayel, M.-L. (2016). Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics, 17, 124. https://doi.org/10.1186/s12864-016-2429-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, S. M. (2020). Lemon: Freshing up your 'ggplot2' plots. R package version 0.4.5. https://CRAN.R-project.org/package=lemon

  • Fox, J., & Weisberg, S. (2019). An {R} companion to applied regression, Third Edition. Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/

  • Gangneux, C., Cannesan, M.-A., Bressan, M., Castel, L., Moussart, A., Vicré-Gibouin, M., Driouich, A., Trinsoutrot-Gattin, I., & Laval, K. (2014). A sensitive assay for rapid detection and quantification of Aphanomyces euteiches in soil. Phytopathology, 104, 1138–1147. https://doi.org/10.1094/PHYTO-09-13-0265-R.

    Article  CAS  PubMed  Google Scholar 

  • Gastwirth, J. L., Gel, Y. R., Hui W. L., Lyubchich, V., Miao, W., & Noguchi, K. (2020). Lawstat: Tools for biostatistics, public policy, and law. R package version 3.4. https://CRAN.R-project.org/package=lawstat

  • Gaulin, E., Jacquet, C., Bottin, A., & Dumas, B. (2007). Root rot disease of legumes caused by Aphanomyces euteiches. Molecular Plant Pathology, 8, 539–548. https://doi.org/10.1111/j.1364-3703.2007.00413.x.

    Article  PubMed  Google Scholar 

  • Gerlach, R., & Nocerino, J. (2003). Guidance for obtaining representative laboratory analytical subsamples from particulate laboratory samples. US Environmental Protection Agency.

  • Gossen, B. D., Conner, R. L., Chang, K.-F., Pasche, J. S., McLaren, D. L., Henriquez, M. A., Chatterton, S., & Hwang, S. F. (2016). Identifying and managing root rot of pulses on the northern Great Plains. Plant Disease, 100, 1965–1978. https://doi.org/10.1094/PDIS-02-16-0184-FE.

    Article  PubMed  Google Scholar 

  • Gossen, B. D., Al-Daoud, F., Dumonceaux, T., Dalton, J. A., Peng, G., Pageau, D., & McDonald, M. R. (2019). Comparison of techniques for estimation of resting spores of Plasmodiophora brassicae in soil. Plant Pathology, 68, 954–961. https://doi.org/10.1111/ppa.13007.

    Article  CAS  Google Scholar 

  • Greenhalgh, F. C., Merriman, P. R., & Keane, P. J. (1988). Relative importance of root rots of subterranean clover caused by Aphanomyces euteiches and Phytophthora clandestina. Plant Pathology, 37, 344–350. https://doi.org/10.1111/j.1365-3059.1988.tb02084.x.

    Article  Google Scholar 

  • Herdina, Neate, S., Jabaji, S., & Ophel-Keller, K. (2004). Persistence of DNA of Gaeumannomyces graminis var. tritici in soil as measured by a DNA-based assay. FEMS Microbiology Ecology, 47, 143–152. https://doi.org/10.1016/S0168-6496(03)00255-1.

    Article  CAS  PubMed  Google Scholar 

  • Heyman, F. (2008). Root rot of pea caused by Aphanomyces euteiches: calcium-dependent soil suppressiveness, molecular detection and population structure (PhD Thesis). Dept. of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala.

  • Heyman, F., Lindahl, B., Persson, L., Wikstrom, M., & Stenlid, J. (2007). Calcium concentrations of soil affect suppressiveness against Aphanomyces root rot of pea. Soil Biology & Biochemistry, 39, 2222–2229. https://doi.org/10.1016/j.soilbio.2007.03.022.

    Article  CAS  Google Scholar 

  • Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J., Bright, I. J., Lucero, M. Y., Hiddessen, A. L., Legler, T. C., Kitano, T. K., Hodel, M. R., Petersen, J. F., Wyatt, P. W., Steenblock, E. R., Shah, P. H., Bousse, L. J., Troup, C. B., Mellen, J. C., Wittmann, D. K., Erndt, N. G., Cauley, T. H., Koehler, R. T., So, A. P., Dube, S., Rose, K. A., Montesclaros, L., Wang, S., Stumbo, D. P., Hodges, S. P., Romine, S., Milanovich, F. P., White, H. E., Regan, J. F., Karlin-Neumann, G. A., Hindson, C. M., Saxonov, S., & Colston, B. W. (2011). High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Analytical Chemestry, 83, 8604–8610. https://doi.org/10.1021/ac202028g.

    Article  CAS  Google Scholar 

  • Hlavac, M. (2018). Stargazer: Well-formatted regression and summary statistics tables. R package version 5.2.1. https://CRAN.R-project.org/package=stargazer

  • Holub, E. B., Grau, C. R., & Parke, J. L. (1991). Evaluation of the forma specialis concept in Aphanomyces euteiches. Mycological Research, 95, 147–157.

    Article  Google Scholar 

  • Jones, F. R., & Drechsler, C. (1925). Root rot of peas in the United States caused by Aphanomyces euteiches (n. sp.). Journal of Agricultural Research, 30, 293–325.

    Google Scholar 

  • Kjoller, R., & Rosendahl, S. (1998). Enzymatic activity of the mycelium compared with oospore development during infection of pea roots by Aphanomyces euteiches. Phytopathology, 88, 992–996. https://doi.org/10.1094/PHYTO.1998.88.9.992.

    Article  CAS  PubMed  Google Scholar 

  • Kraft, J. M. (1990). Detection of Aphanomyces euteiches in field soil from northern Idaho by a wet-sieving/baiting technique. Plant Disease, 74, 716. https://doi.org/10.1094/PD-74-0716.

    Article  Google Scholar 

  • Kraft, J. M., & Pfleger, F. L. (2001). Compendium of pea diseases and pests. American Phytopathological Society (APS Press).

  • Kunadiya, M. B., Burgess, T. I., Dunstan, W. A., White, D., & Hardy, G. E. S. (2020). Persistence and degradation of Phytophthora cinnamomi DNA and RNA in different soil types. Environmental DNA, 3, 92–104. https://doi.org/10.1002/edn3.127.

    Article  Google Scholar 

  • Lamari, L., & Bernier, C. C. (1985). Etiology of seedling blight and root rot of faba bean (Vicia faba) in Manitoba. Canadian Journal of Plant Pathology, 7, 139–145. https://doi.org/10.1080/07060668509501490.

    Article  Google Scholar 

  • Lavaud, C., Lesné, A., Piriou, C., Le Roy, G., Boutet, G., Moussart, A., Poncet, C., Delourme, R., Baranger, A., & Pilet-Nayel, M.-L. (2015). Validation of QTL for resistance to Aphanomyces euteiches in different pea genetic backgrounds using near-isogenic lines. Theoretical and Applied Genetics, 128, 2273–2288. https://doi.org/10.1007/s00122-015-2583-0.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Li, C., Muhae-Ud-Din, G., Liu, T., Chen, W., Zhang, J., & Gao, L. (2020). Development of the droplet digital PCR to detect the teliospores of Tilletia controversa Kuhn in the soil with greatly enhanced sensitivity. Frontiers Microbiology, 11, 4. https://doi.org/10.3389/fmicb.2020.00004.

    Article  Google Scholar 

  • Maldonado-Gonzalez, M. M., Martinez-Diz, M. D., Andres-Sodupe, M., Bujanda, R., Diaz-Losada, E., & Gramaje, D. (2020). Quantification of Cadophora luteo-olivacea from grapevine nursery stock and vineyard soil using droplet digital PCR. Plant Disease, 104, 2269–2274. https://doi.org/10.1094/PDIS-09-19-2035-RE.

    Article  CAS  PubMed  Google Scholar 

  • Malvick, D., Percich, J., Pfleger, F., Givens, J., & Williams, J. (1994). Evaluation of methods for estimating inoculum potential of Aphanomyces-Euteiches in soil. Plant Disease, 78, 361–365. https://doi.org/10.1094/PD-78-0361.

    Article  Google Scholar 

  • Manning, M. A., & Menzies, S. A. (1980). Root rot of peas in New Zealand caused by Aphanomyces euteiches. New Zealand Journal of Agricultural Research, 23, 263–265. https://doi.org/10.1080/00288233.1980.10430797.

    Article  Google Scholar 

  • Matheson, C. D., Gurney, C., Esau, N., & Lehto, R. (2010). Assessing PCR inhibition from humic substances. The Open Enzyme Inhibition Journal, 3, 38–45. https://doi.org/10.2174/1874940201003010046.

    Article  CAS  Google Scholar 

  • Moussart, A., Wicker, E., Le Delliou, B., Abelard, J.-M., Esnault, R., Lemarchand, E., Rouault, F., Le Guennou, F., Pilet-Nayel, M.-L., Baranger, A., Rouxel, F., & Tivoli, B. (2009). Spatial distribution of Aphanomyces euteiches inoculum in a naturally infested pea field. European Journal of Plant Pathology, 123, 153–158. https://doi.org/10.1007/s10658-008-9350-x.

    Article  Google Scholar 

  • Moussart, A., Even, M. N., Lesne, A., & Tivoli, B. (2013). Successive legumes tested in a greenhouse crop rotation experiment modify the inoculum potential of soils naturally infested by Aphanomyces euteiches. Plant Pathology, 62, 545–551. https://doi.org/10.1111/j.1365-3059.2012.02679.x.

    Article  Google Scholar 

  • Oyarzun, P., & van Loon, J. (1989). Aphanomyces euteiches as a component of the complex of foot and root pathogens of peas in Dutch soils. Netherlands Journal of Plant Pathology, 95, 259–264. https://doi.org/10.1007/BF01977730.

    Article  Google Scholar 

  • Oyarzun, P., Gerlagh, M., & Hoogland, A. E. (1993). Relation between cropping frequency of peas and other legumes and foot and root rot in peas. Netherlands Journal of Plant Pathology, 99, 35–44. https://doi.org/10.1007/BF01974783.

    Article  Google Scholar 

  • Papavizas, G. C., & Ayers, W. A. (1974). Aphanomyces species and their root diseases in pea and sugarbeet: A review. U.S.D.A. Agricultural Research Service Technical Bulletin 1485.

  • Persson, L. (1998). Soil suppressiveness to Aphanomyces root rot of pea. In 1 vols, Acta Universitatis Agriculturae Sueciae Agraria, 131. Swedish University of Agricultural Sciences.

  • Persson, L., Bodker, L., & Larsson-Wikstrom, M. (1997). Prevalence and pathogenicity of foot and root rot pathogens of pea in southern Scandinavia. Plant Disease, 81, 171–174. https://doi.org/10.1094/PDIS.1997.81.2.171.

    Article  CAS  PubMed  Google Scholar 

  • Persson, L., Larsson-Wikstrom, M., & Gerhardson, B. (1999). Assessment of soil suppressiveness to Aphanomyces root rot of pea. Plant Disease, 83, 1108–1112. https://doi.org/10.1094/PDIS.1999.83.12.1108.

    Article  CAS  PubMed  Google Scholar 

  • Peters, R. D., & Grau, C. R. (2002). Inoculation with nonpathogenic Fusarium solani increases severity of pea root rot caused by Aphanomyces euteiches. Plant Disease, 86, 411–414. https://doi.org/10.1094/PDIS.2002.86.4.411.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, L., Minkkinen, P., & Esbensen, K. H. (2005). Representative sampling for reliable data analysis: Theory of sampling. Chemometrics and Intelligent Laboratory Systems, 77(1), 261–277. https://doi.org/10.1016/j.chemolab.2004.09.013.

    Article  CAS  Google Scholar 

  • Pfender, W., & Hagedorn, D. (1982). Aphanomyces-Euteiches f sp phaseoli, a causal agent of bean root and hypocotyl rot. Phytopathology, 72, 306–310. https://doi.org/10.1094/Phyto-72-306.

    Article  Google Scholar 

  • Pfender, W. F., Rouse, D. I., & Hagedorn, D. J. (1981). A “most probable number” method for estimating inoculum density of Aphanomyces euteiches in naturally infested soil. Phytopathology, 71, 1169–1172. https://doi.org/10.1094/Phyto-71-1169.

    Article  Google Scholar 

  • Pietramellara, G., Ascher-Jenull, J., Borgogni, F., Ceccherini, M. T., Guerri, G., & Nannipieri, P. (2008). Extracellular DNA in soil and sediment: Fate and ecological relevance. Biology and Fertility of Soils, 45, 219–235. https://doi.org/10.1007/s00374-008-0345-8.

    Article  CAS  Google Scholar 

  • Plassart, P., Terrat, S., Thomson, B., Griffiths, R., Dequiedt, S., Lelievre, M., Regnier, T., Nowak, V., Bailey, M., Lemanceau, P., Bispo, A., Chabbi, A., Maron, P.-A., Mougel, C., & Ranjard, L. (2012). Evaluation of the ISO standard 11063 DNA extraction procedure for assessing soil microbial abundance and community structure. PLoS One, 7, e44279. https://doi.org/10.1371/journal.pone.0044279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quillevere-Hamard, A., Le Roy, G., Moussart, A., Baranger, A., Andrivon, D., Pilet-Nayel, M.-L., & Le May, C. (2018). Genetic and pathogenicity diversity of Aphanomyces euteiches populations from pea-growing regions in France. Frontiers in Plant Science, 9, 1673. https://doi.org/10.3389/fpls.2018.01673.

    Article  PubMed  PubMed Central  Google Scholar 

  • Racki, N., Dreo, T., Gutierrez-Aguirre, I., Blejec, A., & Ravnikar, M. (2014). Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods, 10, 42. https://doi.org/10.1186/s13007-014-0042-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiling, T., King, T., & Fields, R. (1960). Soil indexing for pea root rot and the effect of root rot on yield. Phytopathology, 50, 287–290.

    Google Scholar 

  • Robideau, G. P., De Cock, , A. W. A. M., Coffey, M. D., Voglmayr, H., Brouwer, H., Bala, K., Chitty, D. W., Désaulniers, N., Eggertson, Q. A., et al. (2011). DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Molecular Ecology Resources, 11, 1002–1011. https://doi.org/10.1111/j.1755-0998.2011.03041.x.

  • Sauvage, H., Moussart, A., Bois, F., Tivoli, B., Barray, S., & Laval, K. (2007). Development of a molecular method to detect and quantify Aphanomyces euteiches in soil. FEMS Microbiology Letters, 273, 64–69. https://doi.org/10.1111/j.1574-6968.2007.00784.x.

    Article  CAS  PubMed  Google Scholar 

  • Schren, A. L. (1960). Germination of oospores of Aphanomyces euteiches embedded in plant debris. Phytopathology, 50, 274–277.

    Google Scholar 

  • Sekizaki, H., Yokosawa, R., Chinen, C., Adachi, H., & Yamane, Y. (1993). Studies on zoospore attracting activity. II. Synthesis of isoflavones and their attracting activity to Aphanomyces euteiches zoospore. Biological & pharmaceutical bulletin, 16, 698–701.

    Article  CAS  Google Scholar 

  • Sherwood, R. T., & Hagedorn, D. J. (1958). Determining common root rot potential of pea fields. Agricultural Experiment Station, University of Wisconsin-Madison.

  • Tofte, J. E. (1990). Reaction of red clover (Trifolium pratense L.) and diploid alfalfa (Medicago sativa L. and Medicago Falcata L.) to Aphanomyces euteiches Drechs. and selection for and inheritance of resistance in red clover. University of Wisconsin - Madison.

  • Tsvetkova, N. A., & Guseva, T. A. (1980). The effect of Aphanomyces euteiches Drechs. pathogen of root rot of pea, and Tachigaren on the chemical composition of pea plants. Byulleten’ Vsesoyuznogo Nauchno-Issledovatel’skogo Instituta Zashchity Rastenii 45–49.

  • Vandemark, G. J., & Porter, L. D. (2010). First report of lentil root rot caused by Aphanomyces euteiches in Idaho. Plant Disease, 94, 480–480. https://doi.org/10.1094/PDIS-94-4-0480B.

    Article  CAS  PubMed  Google Scholar 

  • Vandemark, G. J., Kraft, J. M., Larsen, R. C., Gritsenko, M. A., & Boge, W. L. (2000). A PCR-based assay by sequence-characterized DNA markers for the identification and detection of Aphanomyces euteiches. Phytopathology, 90, 1137–1144. https://doi.org/10.1094/PHYTO.2000.90.10.1137.

    Article  CAS  PubMed  Google Scholar 

  • Vandemark, G. J., Barker, B. M., & Gritsenko, M. A. (2002). Quantifying Aphanomyces euteiches in alfalfa with a fluorescent polymerase chain reaction assay. Phytopathology, 92, 265–272. https://doi.org/10.1094/PHYTO.2002.92.3.265.

    Article  CAS  PubMed  Google Scholar 

  • Wallenhammar, A.-C., Almquist, C., Söderström, M., & Jonsson, A. (2012). In-field distribution of Plasmodiophora brassicae measured using quantitative real-time PCR. Plant Pathology, 61, 16–28. https://doi.org/10.1111/j.1365-3059.2011.02477.x.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhang, W., Wang, Y., & Zheng, X. (2006). Rapid and sensitive detection of Phytophthora sojae in soil and infected soybeans by species-specific polymerase chain reaction assays. Phytopathology, 96, 1315–1321. https://doi.org/10.1094/PHYTO-96-1315.

    Article  CAS  PubMed  Google Scholar 

  • Wen, R., Lee, J., Chu, M., Tonu, N., Dumonceaux, T., Gossen, B. D., Yu, F., & Peng, G. (2020). Quantification of Plasmodiophora brassicae resting spores in soils using droplet digital PCR (ddPCR). Plant Disease, 104, 1188–1194. https://doi.org/10.1094/PDIS-03-19-0584-RE.

    Article  CAS  PubMed  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J., (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). Academic Press,https://doi.org/10.1016/b978-0-12-372180-8.50042-1.

  • Wicker, E., Hulle, M., & Rouxel, F. (2001). Pathogenic characteristics of isolates of Aphanomyces euteiches from pea in France. Plant Pathology, 50, 433–442. https://doi.org/10.1046/j.1365-3059.2001.00590.x.

    Article  Google Scholar 

  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis, second edition, use R! Springer International Publishing. https://doi.org/10.1007/978-3-319-24277-4.

  • Wickham, H., & Bryan J. (2019). Readxl: Read excel files. R package version 1.3.1. https://CRAN.R-project.org/package=readxl

  • Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., & Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4, 1686. https://doi.org/10.21105/joss.01686.

    Article  Google Scholar 

  • Wilke, C.O. (2020). Cowplot: Streamlined plot theme and plot annotations for 'ggplot2'. R package version 1.1.0. https://CRAN.R-project.org/package=cowplot

  • Willsey, T. L., Chatterton, S., Heynen, M., & Erickson, A. (2018). Detection of interactions between the pea root rot pathogens Aphanomyces euteiches and Fusarium spp. using a multiplex qPCR assay. Plant Patholology, 67, 1912–1923. https://doi.org/10.1111/ppa.12895.

    Article  Google Scholar 

  • Wood, S. A., Pochon, X., Laroche, O., von Ammon, U., Adamson, J., & Zaiko, A. (2019). A comparison of droplet digital polymerase chain reaction (PCR), quantitative PCR and metabarcoding for species-specific detection in environmental DNA. Molecular Ecology Resources, 19, 1407–1419. https://doi.org/10.1111/1755-0998.13055.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L., Chang, K.-F., Conner, R. L., Strelkov, S., Fredua-Agyeman, R., Hwang, S.-F., & Feindel, D. (2018). Aphanomyces euteiches: A threat to Canadian field pea production. Engineering, 4, 542–551. https://doi.org/10.1016/j.eng.2018.07.006.

    Article  CAS  Google Scholar 

  • Yokosawa, R., Kuninaga, S., & Teranaka, M. (1974). Note on pea root rot fungus, Aphanomyces euteiches Drechs. in Japan. Annals of the Phytopathological Society of Japan, 40, 454–457 (in Japanese). https://doi.org/10.3186/jjphytopath.40.454.

    Article  Google Scholar 

  • Zitnick-Anderson, K., del Rio Mendoza, L. E., Forster, S., & Pasche, J. S. (2020). Associations among the communities of soil-borne pathogens, soil edaphic properties and disease incidence in the field pea root rot complex. Plant and Soil, 457, 339–354. https://doi.org/10.1007/s11104-020-04745-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Simon Gibert was financially supported by a PhD funding from Bonduelle SAS (59653 Villeneuve d’Ascq, France) and the National Association of Technical Research (ANRT) (CIFRE n°2017/0852).

The authors would like to thank Guillaume Fourrier of Bio-Rad laboratories for his technical assistance at the beginning of the project and for his help for the design of a ddPCR probe. The authors thank Cécile Jacot-des-Combes for the expertise and facilities of the DTAMB platform (University Lyon 1).

This work, through the involvement of the technical facilities of the GenoSol platform of the infrastructure ANAEE-Services, indirectly benefited from a grant from the French state through the National Agency for Research under the program “Investments for the Future” (reference ANR-11-INBS-0001), as well as from a grant from the Regional Council of Bourgogne Franche Comté. The BRC GenoSol is a part of BRC4Env, the pillar “Environmental Resources” of the Research Infrastructure AgroBRC-RARe.

Code availability

R scripts developed in this study are available in a supplementary information file.

Funding

Simon Gibert was financially supported by a PhD funding from Bonduelle SAS (59653 Villeneuve d’Ascq, France) and the National Association of Technical Research (ANRT) (CIFRE n°2017/0852).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Edel-Hermann.

Ethics declarations

Conflicts of interest/competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Supplementary Information

ESM 1

(PDF 360 kb)

ESM 2

(XLSX 104 kb)

ESM 3

(XLSX 30 kb)

ESM 4

(XLSX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibert, ., Edel-Hermann, V., Moussa Mcolo, R. et al. Risk assessment of Aphanomyces euteiches root rot disease: quantification of low inoculum densities in field soils using droplet digital PCR. Eur J Plant Pathol 161, 503–528 (2021). https://doi.org/10.1007/s10658-021-02325-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02325-5

Keywords

Navigation