Abstract
Turnip mosaic virus (TuMV) infects many plant species, being the only potyvirus able to infect brassicas. TuMV isolates have been classified into 12 pathotypes according to symptoms induced in lines of Brassica napus, and molecularly clustered into six lineages (basal-B, basal-BR, Asian-BR, world-B, Iranian and OMs). Despite being considered one of the most important viruses infecting brassicas worldwide, there is little information on this virus in the Neotropical region. Aiming to fill in this gap and advance knowledge on occurrence, genetic variability, and biological aspects of TuMV in Brazil, 40 isolates were identified and characterised. Five of these isolates were selected to determine their host range, sequence their genomes, and for phylogenetic, recombination and diversity analyses. Mechanical inoculations performed on plant species from 10 families showed differences in symptom expression among isolates. Inoculations of 13 TuMV isolates in B. napus lines revealed occurrence only of the pathotype 1. According to phylogenetic analyses of the coat protein, TuMV Brazilian isolates clustered into the groups: world-B (subgroups world-B2 and world-B3) and basal-BR. In the latter, there was a formation of a subclade named Brazilian subgroup composed by 31 Brazilian TuMV isolates. Intralineage and interlineage recombination events of world-B, basal-B and basal-BR suggest that Brazilian TuMV isolates had a European origin. Our diversity analysis suggest that a strong negative selection is acting on polyprotein coding region. We confirmed that Brazilian TuMV isolates showed high variability, which together with their ability to infect wild brassicas and to circumvent resistance genes highlight their genetic and epidemiological potential in causing damages in cultivated species of brassicas and other crops in Brazil.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adams, M. J., Antoniw, J. F., & Beaudoin, F. (2005). Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Molecular Plant Pathology, 6, 471–487.
Anonymous. (2016). CONAB PROHORT. Programa brasileiro de modernização do mercado hortigranjeiro. Available at: http://dw.prohort.conab.gov.br/pentaho/Prohort [Accessed on November 30, 2016].
Atreya, C.D., & Pirone, T.P. (1993). Mutational analysis of the helper component-proteinase gene of a potyvirus: Effects of amino acid substitutions, deletions, and gene replacement on virulence and aphid transmissibility. Proceedings of the National Academy of Sciences of the USA, 90, 11919–11923.
Berthelot, E., Ducousso, M., Macia, J-L., Bogaert, F., Baecker, V., Thébaud, G., Gallet., R., Yvon, M., Blanc, S., Khelifa, M., & Druckera, M. (2019). Turnip mosaic virus is a second example of a virus using transmission activation for plant-to-plant propagation by aphids. Journal of Virology, 93 (9), e01822–e01818.
Carvalho, C., Kist, B.B., & Treichel, M. (2017). Brazilian Vegetable Yearbook (Anuário Brasileiro de Hortaliças). Ed. Gazeta Santa Cruz, Santa Cruz do Sul, RS. 62 p.
Chai, M., Wu, X., Liu, J., Fang, Y., Luan, Y., Cui, X., Zhou, X., Wang, A., & Cheng, X. (2020). P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. Journal of Virology, 94, e01898–e01819.
Chare, E. R., & Holmes, E. C. (2004). Selection pressures in the capsid genes of plant RNA viruses reflect mode of transmission. Journal of General Virology, 85, 3149–3157.
Chung, B.Y.W., Miller, W.A., Atkins, J.F., & Firth, A.E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of National Academy of Science of the USA, 105, 5897–5902.
Colariccio, A., Chaves, A. L. R., Eiras, M., Frangioni, D. S. S., & Chagas, C. M. (2000). Identificação dos tipos I e II do Turnip mosaic virus em couve através de hospedeiras diferenciais. Summa Phytopathologica, 26, 455–459.
Costa, H., Ventura, J. A., Jadão, A. S., Rezende, J. A. M., & Mello, A. P. O. A. (2010). First report of turnip mosaic virus on watercress in Brazil. Plant Disease, 94, 1066–1066.
Dalla Pria, M., Martins, M. C., Reghin, M. Y., & Maia, G. L. (2002). Ocorrência de doenças do pak choi no estado do Paraná, Brasil. Fitopatologia Brasileira, 27(3), 316–318.
Eiras, M., Chaves, A. L. R., Colariccio, A., & Chagas, C. M. (2007). First report of Turnip mosaic virus in horseradish in Brazil. Fitopatologia Brasileira, 32(2), 165.
Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using PHRED. II. Error probabilities. Genome Research, 8, 186–119.
Fajardo, T. V. M., Silva, F. N., Eiras, M., & Nickel, O. (2017). High-throughput sequencing applied for the of viruses infecting grapevines in Brazil and genetic variability analysis. Tropical Plant Pathology, 42, 250–260.
Gadhave, K. R., Gautam, S., Rasmussen, D. A., & Srinivasan, R. (2020). Aphid transmission of Potyvirus: The largest plant-infecting RNA virus genus. Viruses, 12, 773.
García-Arenal, F., Fraile, A., & Malpica, J. M. (2001). Variability and genetic structure of plant virus populations. Annual Review of Phytopathology, 39, 157–186.
García-Arenal, F., Fraile, A., & Malpica, J. M. (2003). Variation and evolution of plant virus populations. International Microbiology, 6, 225–232.
Gal-On, A. A. (2000). Point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology, 90, 467–473.
Gibbs, A. J., Hajizadeh, M., Ohshima, K., & Jones, R. A. C. (2020). The Potyviruses: An evolutionary synthesis is emerging. Viruses, 12, 132.
Gibbs, A. J., Nguyen, H. D., & Ohshima, K. (2015). The ‘emergence’ of turnip mosaic virus was probably a ‘gene-for-quasi-gene’ event. Current Opinion in Virology, 10, 20–26.
Gong, J., Ju, H. K., Kim, I. H., Seo, E. Y., Cho, I. S., Hu, W. X., Han, J. Y., Kim, J. K., Choi, S. R., Lim, Y. P., Hammond, J., & Lim, H. S. (2019). Sequence variations among 17 new radish isolates of Turnip mosaic virus showing differential pathogenicity and infectivity in Nicotiana benthamiana, Brassica rapa, and Raphanus sativus. Phytopathology, 109, 904–912.
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., & Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644–652.
Green, S. K., & Deng, T. C. (1985). Turnip mosaic virus strains in cruciferous hosts in Taiwan. Plant Disease, 69, 27–31.
Guerret, M.G.C., Nyalugwe, E.P., Maina,S., Brabetti, M.J., Vann Leur, J.A.G., & Jones, R.A.C. (2017). Biological and molecular properties of turnip mosaic virus (TuMV) strain breaks TuMV resistance in Brassica napus. Plant Disease, 101, 674–683.
Ha, C., Coombs, S., Revill, P. A., Harding, R. M., Vu, M., & Dale, J. L. (2008). Design and application of two novel degenerate primer pairs for the detection and complete genomic characterization of potyviruses. Archives of Virology, 153, 25–36.
Haas, B., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M., MacManes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C. N., Henschel, R., LeDuc, R. D., Friedman, N., & Regev, A. (2013). De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nature Protocols, 8, 1494–1512.
Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome Research, 9, 868–877.
Hughes, S. S., Hunter, P. J., Sharp, A. G., Kearsey, M. J., Lydiate, D. J., & Walsh, J. A. (2003). Genetic mapping of the novel turnip mosaic virus resistance gene TuRB03 in Brassica napus. Theoretical and Applied Genetics, 107, 1169–1173.
IEA, Instituto de Economia Agrícola (2019). Estatísticas da produção paulista. Available at www.iea.sp.gov.br. Accessed in November 2019.
Jenner, C. E., Wang, X., Ponz, F., & Wash, J. A. (2002). A fitness cost for Turnip mosaic virus to overcome host resistance. Virus Research, 86, 1–6.
Jenner, C. E., & Walsh, J. A. (1996). Pathotypic variation in turnip mosaic virus with special reference to European isolates. Plant Pathology, 45, 48–856.
Kitajima, E. W. (2020). An annotated list of plant viruses and viroids described in Brazil (1926-2018). Biota Neotropica, 20, e20190932.
Kitajima, E. W., Camargo, I. J. B., & Costa, A. S. (1970). Morfologia e aspectos intracelulares do vírus latente da couve. Bragantia, 29, 181–190.
Korkmaz, S., Tomitaka, Y., Onder, S., & Ohshima, K. (2008). Occurrence and molecular characterization of Turkish isolates of Turnip mosaic virus. Plant Pathology, 57, 1155–1162.
Li, G., Lv, H., Zhang, S., Zhang, S., Li, F., Zhang, H., Qian, W., Fang, Z., & Sun, R. (2019). TuMV management for brassica crops through host resistance: Retrospect and prospects. Plant Pathology, 68, 1035–1044.
Li, Q. Y., Zhang, X., Zeng, Q., Zhang, Z., Liu, S., Pei, Y., Wang, S., Liu, X., Xu, W., Fu, W., Zhao, Z., & Song, X. (2014). Identification and mapping of a novel turnip mosaic virus resistance gene TuRBCS01 in Chinese cabbage (Brassica rapa L.). Plant Breeding, 134, 221–225.
Lima, A. T. M., Sobrinho, R. R., Gonzalez-Aguilera, J., Rocha, C. S., Silva, S. J. C., Xavier, C. A. D., Silva, F. N., Duffy, S., & Zerbini, F. M. (2013). Synonymous site variation due to recombination explains higher genetic variability in begomovirus populations infecting non-cultivated hosts. Journal of General Virology, 94, 418–431.
Lorenzi, H. (2008). Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e toxicas. 4ªed. Nova Odessa: Instituto Plantarum de Estudos de Flora Ltda.
Madeira, N. R., Reifschneider, F. J. B., & Giordano, L. B. (2008). Contribuição portuguesa à produção e ao consumo de hortaliças no Brasil: uma revisão histórica. Horticultura Brasileira, 26, 428–432.
Maia, I. G., & Bernardi, F. (1996). Nucleic acid-binding properties of a bacterially expressed Potato virus Y helper component-proteinase. Journal of General Virology, 77, 869–877.
Martin, D. P., Lemey, P., Lott, M., Moulton, V., Posada, D., & Lefeuvre, P. (2010). RDP3: A flexible and fast computer program for analyzing recombination. Bioinformatics, 26, 2462–2463.
Melo, R. A. C., Vendrame, L. P. C., Madeira, N. R., Blind, A. D., & Vilela, N. J. (2019). Characterization of the Brazilian vegetable brassicas production chain. Horticultura Brasileira, 37, 366–372.
Moura, C. J. M., Fajardo, T. V. M., Eiras, M., Silva, F. N., & Nickel, O. (2018). Molecular characterization of GSyV-1 and GLRaV-3 and prevalence of grapevine viruses in a grape-growing area. Scientia Agricola, 75, 43–51.
Nellist, C. F., Qian, W., Jenner, C. E., Moore, J. D., Zhang, S., Wang, X., Briggs, W. H., Barker, G. C., Sun, R., & Walsh, J. A. (2014). Multiple copies of eukaryotic translation initiation factors in Brassica rapa facilitate redundancy, enabling diversification through variation in splicing and broad-spectrum virus resistance. Plant Journal, 77, 261–268.
Nguyen, H. D., Tomitaka, Y., Ho, S. Y., Duchêne, S., Vetten, H. J., Lesemann, D., Walsh, J. A., Gibbs, A. J., & Ohshima, K. (2013). Turnip mosaic potyvirus probably first spread to Eurasian Brassica crops from wild orchids about 1000 years ago. PLoS One, 8, e55336.
Nyalugwe, E. P., Jones, R. A. C., Barbetti, M. J., & Kehoe, M. A. (2015). Biological and molecular variation amongst Australian turnip mosaic virus isolates. Plant Pathology, 64, 215–1223.
Ohshima, K., Akaishi, S., Kajiyama, H., Koga, R., & Gibbs, A. J. (2010). Evolutionary trajectory of turnip mosaic virus populations adapting to a new host. Journal of General Virolology, 91, 788–801.
Ohshima, K., Tomitaka, Y., Wood, J. T., Minematsu, Y., Kajiyama, H., Tomimura, K., & Gibbs, A. J. (2007). Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination. Journal of General Virology, 88(298–315), 2007.
Ohshima, K., Yamaguchi, Y., Hirota, R., Hamamote, T., Tomimura, K., Tan, Z., Sano, T., Azuhata, F., Walsh, J. A., Fletcher, J., Chen, J., Gera, A., & Gibbs, A. (2002). Molecular evolution of turnip mosaic virus: Evidence of host adaptation, genetic recombination and geographical spread. Journal of General Virology, 83, 1511–1521.
Palukaitis, P., & Kim, S. (2021). Resistance to turnip mosaic virus in the family Brassicaceae. Plant Pathology Journal, 37, 1–23. https://doi.org/10.5423/PPJ.RW.09.2020.0178.
Plisson, C., Drucker, M., Blanc, S., German-Retana, S., Le Gall, O., Thomas, D., & Bron, P. (2003). Structural characterization of HC-pro, a plant virus multifunctional protein. The Journal of Biological Chemistry, 278, 23753–23761.
Provvidenti, R. (1996). Turnip mosaic virus. In: Brunt, A.A., Crabtree, K., Dallwitz, M.J., Gibbs, A.J., & Watson, L. (Eds.). CABI: Wallingford, pp. 1340–1343.
Qian, W., Zhang, S., Zhang, S., Li, F., Zhang, H., Wu, J., Wang, X., Walsh, J. A., & Sun, R. (2013). Mapping and candidate-gene screening of the novel turnip mosaic virus resistance gene retr02 in Chinese cabbage (Brassica rapa L.). Theoretical and Applied Genetics, 126, 179–188.
Raybould, A. F., Maskell, L. C., Edwards, M. L., Cooper, J. I., & Gray, A. J. (1999). The prevalence and spatial distribution of viruses in natural populations of Brassica oleracea. New Phytologist, 141, 265–275.
Ribeiro-Junior, M. R., Baldine, L. F. S., Nozaki, D. N., Cruciol, G. C. D., Pantoja, K. F. C., Marchi, B. R., Moura, M. F., Pavan, M. A., & Krause-Sakate, R. (2018a). Biological and molecular characterization of a basal Brassica/Raphanus Turnip mosaic virus isolates from Eruca sativa. Tropical Plant Pathology, 43, 371–375.
Ribeiro-Junior, M. R., Cruciol, G. C. D., Moura, M. F., Marchi, B. R., Pavan, M. A., & Sakate, R. K. (2018b). First report of turnip mosaic virus naturally infecting lettuce and chard plants in Brazil. Journal of Plant Pathology, 101, 189.
Rocha, C. S., Castillo-Urquiza, G. P., Lima, A. T. M., Silva, F. N., Xavier, C. A. D., Hora-Junior, B. T., Beserra-Junior, J. E. A., Malta, A. W. O., Martin, D. P., Varsani, A., Alfenas-Zerbini, P., Mizubuti, E. S. G., & Zerbini, F. M. (2013). Brazilian begomovirus populations are highly recombinant, rapidly evolving, and segregated based on geographical location. Journal of Virology, 87, 5784–5799.
Rodrigues, L. K., Oliveira, A. M., Chaves, A. L. R., Kitajima, E. W., Harakava, R., & Eiras, M. (2019). Cauliflower mosaic virus naturally infects wild radish (Raphanus raphanistrum) in Brazil. Australasian Plant Disease Notes, 14, 26.
Rodrigues, L.K., Chaves, A.L.R., Colariccio, A., Harakava, R., Kitajima, E.W., Walsh, A.J., & Eiras, M. (2015). Turnip mosaic virus infecting brassicas in Brazil. In: 5th conference of the international working group on legume and vegetable viruses (IWGLVV). Haarlem, the Netherlands, abstract number 8.
Rozas, J., Sanchez-Delbarrio, J. C., Messeguer, X., & Rozas, R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 2496–2497.
Rusholme, R. L., Higgins, E. E., Walsh, J. A., & Lydiate, D. J. (2007). Genetic control of broad-spectrum resistance to turnip mosaic virus in Brassica rapa (Chinese cabbage). Journal of General Virology, 88, 3177–3186.
Seo, J. K., Ohshima, K., Leea, H. G., Sona, M., Choid, H. S., Leed, S. H., Sohnd, S. H., & Kim, K. H. (2009). Molecular variability and genetic structure of the population of soybean mosaic virus based on the analysis of complete genome sequences. Virology, 393, 91–103.
Sevik, M. A., & Deligoz, I. (2016). The reaction of cabbage (Brassica oleracea L.) breeding lines against turnip mosaic virus. Acta Scientiarum Polonorum Hortorum Cultus, 15, 111–119.
Shattuck, V. I. (1992). The biology, epidemiology, and control of turnip mosaic virus. Plant Breeding Reviews, 14, 199–238.
Shiboleth, Y. M., Haronsky, E., Leibman, D., Arazi, T., Wassenegger, M., Whitham, S. A., Gaba, V., & Gal-On, A. (2007). The conserved FRNK box in HC-pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. Journal of Virology, 81, 13135–13148.
Suehiro, N., Natsuaki, T., Watanabe, T., & Okuda, S. (2004). An important determinant of the ability of turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. Journal of General Virology, 85, 287–298.
Shukla, D. D., Ward, C. W., & Brunt, A. A. (1994). The Potyviridae (516p). Cambridge: Cambridge University Press.
Tan, Z., Gibbs, A. J., Tomitaka, Y., Sánchez, F., Ponz, F., & Ohshima, K. (2005). Mutations in turnip mosaic virus genomes that have adapted to Raphanus sativus. Journal of General Virology, 86, 501–510.
Tomimura, K., Gibbs, A. J., Jenner, C. E., Walsh, J. A., & Ohshima, K. (2003). The phylogeny of turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent emergence in East Asia. Molecular Ecology, 12, 2099–2111.
Tomlinson, J. A. (1970). Turnip mosaic virus. CMI/AAB descriptions of plant viruses 8. UK: CMI/AAB.
Tomlinson, J. A., & Walker, V. M. (1973). Further studies on seed transmission in the ecology of some aphid-transmitted viruses. Annals of Applied Biology, 73, 293–298.
Walsh, J. A., Rachael, L., Rusholme, R. L., Hughes, S. L., Jenner, C. E., Bambridge, J. M., Lydiate, D. J., & Green, S. K. (2002). Different classes of resistance to turnip mosaic virus in Brassica rapa. European Journal of Plant Pathology, 108, 15–20.
Walsh, J. A., & Jenner, C. E. (2002). Turnip mosaic virus and the quest for durable resistance. Molecular Plant Pathology, 3, 289–300.
Wylie, S. J., Adams, M., Chalam, C., Kreuze, J., López-Moya, J. J., Ohshima, K., Praveen, S., Rabenstein, F., Stenger, D., Wang, A., Zerbini, F. M., & ICTV Report Consortium. (2017). ICTV virus taxonomy profile: Potyviridae. Journal of General Virology, 98, 352–354.
Yasaka, R., Ohba, K., Schwinghamer, M. W., Fletcher, J., Ochoa-Corona, F. M., Thomas, J. E., Ho, S. Y., Gibbs, A. J., & Ohshima, K. (2015). Phylodynamic evidence of the migration of turnip mosaic potyvirus from Europe to Australia and New Zealand. Journal of General Virology, 96, 701–713.
Yasaka, R., Fukagawa, H., Ikematsu, M., Soda, H., Korkmaz, S., Golnaraghi, A., Katis, N., Ho, S. Y. W., Gibbs, A. J., & Ohshima, K. (2017). The timescale of emergence and spread of turnip mosaic potyvirus. Scientific Reports, 26, 4240.
Yoon, J. Y., Green, S. K., & Opeña, R. T. (1993). Inheritance of resistance to turnip mosaic virus in Chinese cabbage. Euphytica, 69, 103–108.
Zanardo, L. G., Silva, F. N., Lima, A. T., Milanesi, D. F., Castilho-Urquiza, G. P., Almeida, A. M., Zerbini, F. M., & Carvalho, C. M. (2014). Molecular variability of Cowpea mild mottle virus infecting soybean in Brazil. Archives of Virology, 159, 727–737.
Zhu, F., Sun, Y., Wang, Y., Pan, H., Wang, F., Zhang, X., Zhang, Y., & Liu, J. (2016). Molecular characterization of the complete genome of three basal-BR isolates of Turnip mosaic virus infecting Raphanus sativus in China. International Journal of Molecular Sciences, 18, 1–13.
Zubareva, I. A., Vinogradova, S. V., Gribova, T. N., Monakhos, S. G., Skryabin, K. G., & Ignatov, A. N. (2013). Genetic diversity of turnip mosaic virus and the mechanism of its transmission by Brassica seeds. Doklady Biochemistry and Biophysics, 450, 119–122.
Acknowledgements
We are grateful to Alyne de Fátima Ramos (Instituto Biológico, Brazil) for technical assistance.
Funding
The research conducted in ME’s laboratory was supported by “Fundação de Amparo à Pesquisa do Estado de São Paulo”, FAPESP (Grants: 2014/22594–2; 2015/50076–9; 2018/17287–4). The research conducted in EWK’s laboratory was supported by FAPESP (Grant: 2017/18910–4). This study was financed in part by the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior”, CAPES - Brazil - Finance Code 001. LKR was recipient of a CAPES Ph.D. fellowship. EWK, RH and ME are supported by a CNPq research fellowship. JAW’s contributions were funded by the University of Warwick’s Brazil Partnership Fund, FAPESP-Warwick Joint Fund, with support from Santander (project codes 09LFAA00 and LFSP02).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Human and animal rights and informed consent
The research does not involve any human participants and/or animals. The materials in the article have not been published in whole or in part elsewhere and not currently being considered for publication in another journal. All authors have been personally and actively involved in substantive work leading to the manuscript and will hold themselves jointly and individually responsible for its content. The authors bear all the ethical responsibilities of this manuscript.
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary Information
Supplementary Fig. S1
Detection of turnip mosaic virus (TuMV) isolates by RT-PCR. Electrophoresis in 1.2% agarose gel of the amplicons using primers (CI-F/CI-R) for the cylindrical inclusion (CI) TuMV genomic region, with expected size of 700 bp (above); and amplicons using primers (CP-F/CP-R) for TuMV coat protein (CP) genomic region amplification, with expected size of 986 bp (below). The lanes T06, T22, T31, T48 and T61 correspond to the five Brazilian TuMV isolates sequenced in this work (Supplementary Table S1). C+: TuMV-infected Chinese cabbage (Brassica rapa ssp. pekinensis). C-: healthy Chinese cabbage plant. The lanes to the left of the agarose gel correspond to the molecular weight marker (DNA 1 kb ladder, Promega, Madison City, WI, USA) (JPG 395 kb)
Supplementary Fig. S2
Scheme of the turnip mosaic virus (TuMV) genome with the indication (arrows) of the cleavage sites in the polyprotein (post-translational processing), which give rise to the viral proteins, with their respective amino acids for the five isolates (T06, T22, T31, T48, T61) fully sequenced in this work. Methionine (M); Phenylalanine (F); Tyrosine (Y); Serine (S); Glycine (G); Glutamine (Q); Threonine (T); Asparagine (N); Alanine (A); Glutamic acid (E); Tryptophan (W); Leucine (L) and Lysine (K). (PNG 132 kb)
Supplementary Fig. S3
Average pairwise number of nucleotide differences per site (nucleotide diversity, π) calculated on a sliding window across the polyprotein of turnip mosaic virus (TuMV). (A) “World” dataset comprising isolates from Australia (04), Belgium (01), Brazil (06), Canada (01), China (4), Croatia (01), Czech Republic (02), Denmark (01), France (01), Germany (11), Greece (03), Hungary (01), Iran (02), Israel (01), Italy (07), Japan (07), Kenya (01), Mexico (01), New Zealand (01), Poland (02), Portugal (01), Russia (01), South Korea (02), Spain (01), Turkey (01), United Kingdom (06) and United States of America (4). (B) Brazilian dataset including six isolates. The isolates of TuMV used for these analyses with their respective access codes at GenBank can be accessed in the Supplementary Table S1 and S2. (PNG 1040 kb)
Supplementary Fig. S4
Mean pairwise number of nucleotide differences per site (nucleotide diversity, π) at synonymous (A) and non-synonymous (B) sites calculated for three regions (5′-terminal, central and 3′ terminal) of the polyprotein of turnip mosaic virus (TuMV) isolates from Brazil, Australia, China, Germany, Italy, Japan, United Kingdom (UK) and United States of America (USA). (PNG 281 kb)
Supplementary Table S1
(DOCX 17 kb)
Supplementary Table S2
(DOCX 13 kb)
Supplementary Table S3
(DOCX 26 kb)
Supplementary Table S4
(DOCX 19 kb)
Supplementary Table S5
(DOCX 18 kb)
Rights and permissions
About this article
Cite this article
Rodrigues, L.K., Chaves, A.L.R., Kitajima, E.W. et al. Characterisation of turnip mosaic virus isolates reveals high genetic variability and occurrence of pathotype 1 in Brazil. Eur J Plant Pathol 160, 883–900 (2021). https://doi.org/10.1007/s10658-021-02291-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10658-021-02291-y


