Skip to main content
Log in

Ecofriendly management of stem rot of berseem caused by Sclerotinia trifoliorum

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Stem rot, incited by Sclerotinia trifoliorum Eriksson is one of the most devastating soil borne fungal pathogens of berseem (Trifolium alexandrinum L.) inflicting significant fodder and seed yield losses. Eleven plant extracts, six organic inputs, one elicitor and five organic and inorganic salts were assayed for their effectiveness against S. trifoliorum under in vitro conditions. Extracts of Aegle marmelos and Cymbopogan citrates showed complete mycelial inhibition of S. trifoliorum at 5% concentration. Among organic inputs, panchgavya and fermented cow urine recorded 100% inhibition to mycelial growth of stem rot pathogen at 10% concentration. Elicitor (chitosan) and salts namely copper sulphate and potassium carbonate provided complete mycelial inhibition of test pathogen under in vitro conditions at 0.1, 2.0 and 5.0% concentrations, respectively. The plant extracts, organic inputs and salts that exhibited highest mycelial inhibition to S. trifoliorum under in vitro conditions were evaluated for their antifungal efficacy under greenhouse and field experiments during rabi 2017–18 and 2018–19. The extracts of chitosan (78.58; 77.15%), panchgavya (75.99; 67.14%), copper sulphate 71.38; 61.18%) and A. marmelos (71.75; 56.24%) have recorded highest percent disease control as compared to untreated control in greenhouse and field trials in rabi 2017–18 and 2018–19, respectively. Significant increase in green fodder yield of berseem from 9.87 to 33.38% was also recorded after treatment with plant extracts, organic inputs and some salts. The current study showed that plant extracts, organic inputs and salts have potential for the management of stem rot of berseem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel, M. H., Yamamoto, N., Otawa, K., Tada, C., & Nakai, Y. (2010). Isolation of bacterium like substances producing bacteria from finished cattle manure compost and activity evaluation against some food borne pathogenic and spoilage bacteria. The Journal of General and Applied Microbiology, 56, 151–161.

    Google Scholar 

  • Abid, M., Chohan, S., Mehmood, M. A., Naz, S., & Naqvi, S. A. H. (2017). Antifungal potential of indigenous medicinal plants against Myrothecium leaf spot of bitter gourd (Momordica charantia L.). Brazilian Archives of Biology and Technology, 60, e17160395.

    Google Scholar 

  • Adrees, H., Haider, M. S., Anjum, T., & Akram, W. (2019). Inducing systemic resistance in cotton plants against charcoal root rot pathogen using indigenous rhizospheric bacterial strains and chemical elicitors. Crop Protect, 115, 75–83.

    CAS  Google Scholar 

  • Ahmad, S. T., Jain, R. K., Pandey, K. C. & Bhaskar, R. B. (1996). Plant protection measures. (in) forage production and utilization. Singh R P (Ed.), Indian Grassland and Fodder Research Institute, Jhansi. pp. 249–73.

  • Ait Barka, E., Eullaffroy, P., Clément, C., & Vernet, G. (2004). Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports, 22, 608–614.

    CAS  PubMed  Google Scholar 

  • Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticide use in agriculture: Their benefits and hazards. Interdisc. Toxicol., 2, 1–12.

    Google Scholar 

  • Ali, H., Naseer, M., & Sajad, M. A. (2012). Phytoremediation of heavy metals by Trifolium alexandrinum. International Journal of Environmental Sciences, 2, 1459–1469.

    CAS  Google Scholar 

  • Arslan, U. (2015). Evaluation of antifungal activity of mono and dipotassium phosphates against phytopathogenic fungi. Fresenius Environmental Bulletin, 24, 810–816.

    Google Scholar 

  • Ashlesha, & Paul, Y. S. (2017). Bioefficacy of plant extracts and biocontrol agents against some plant pathogenic fungi. Indian J Ecol, 44, 598–603.

    Google Scholar 

  • Ashlesha, & Sugha, S. K. (2008). Microbes present in panchgavya and their antifungal potential against major soil borne pathogens. Pl Dis Res, 23, 63–67.

    Google Scholar 

  • Ashlesha, Thakur, S., Paul, Y. S., & Payal, R. (2013). Antifungal activity of cow urine distillates of local botanicals against major pathogens of bell pepper. African Journal of Agricultural Research, 8, 6171–6177.

    Google Scholar 

  • Ashlesha. (2012). Ecofriendly management of bell pepper diseases under protected cultivation. Ph. D. Thesis, CSKHP KV, Palampur (H.P.). pp 221.

  • Astha, Sekhon, P. S., & Sangha, M. K. (2019). Influence of different SAR elicitors on induction and expression of PR-proteins in potato and muskmelon against Oomycete pathogens. Indian Phytopathol, 72, 43–51.

    Google Scholar 

  • Bangari, G. (2011). Ecofriendly strategies for disease management in Indian mustard with special reference to Sclerotinia stem rot. Ph. D. Thesis, G.B. Pant University of Agriculture and Technology, Pantnagar. pp. 191.

  • Bautista–Banos, S., Hernandez-Lopez, S., Bosquez-Molina, M., & Wilson, C. L. (2003). Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protect, 22, 1087–1092.

    Google Scholar 

  • Bedi, J. S., Gill, J. P., Aulakh, R. S., & Kaur, P. (2015). Pesticide residues in bovine milk in Punjab, India: Spatial variation and risk assessment to human health. Archives of Environmental Contamination and Toxicology, 69, 230–240.

    CAS  PubMed  Google Scholar 

  • Bellamy, W., Yamauchi, K., Wakabayashi, H., Takase, M., Takakura, N., Shlmamura, S., & Tomita, M. (1994). Antifungal properties of lactoferricin B, a peptide derived from the N terminal region of bovine lactoferrin. Letters in Applied Microbiology, 18, 230–233.

    CAS  Google Scholar 

  • Bhaskar, R. B., Hasan, N., Pandey, K. C., & Melkania, N. P. (2003). Management of root-rot disease complex of berseem (Trifolium alexandrinum L.). Forage Research, 29, 84–87.

    Google Scholar 

  • Bhat, S. (2013). Phytoremidation properties and CLA content of Berseem (Trifolium alexandrinum). Asian J Microbiol Bio-technol Environ Sci, 15, 573–577.

    Google Scholar 

  • Borkow, G., & Gabbay, J. (2009). Copper, an ancient remedy returning to fight microbial. Fungal and viral infections. Current Chemical Biology, 3, 272–278.

    CAS  Google Scholar 

  • Brown, W. A. (1924). Two mycological methods. I. a simple method of freeing fungal cultures from bacteria. II. A method of isolating strains of fungi by cutting out a hyphal tip. Annals of Botany, 38, 401–404.

    Google Scholar 

  • Chen, C., Long, L., Zhang, F., Chen, Q., Chen, C., & Yu, X. (2018a). Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum. PLoS ONE, 13(3), e0194284. https://doi.org/10.1371/journal.pone.0194284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Long, L., Zhang, F., Chen, Q., Chen, C., Yu, X., Liu, Q., Bao, J., & Long, Z. (2018b). Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum. PLoS One, 13(3), e0194284.

    PubMed  PubMed Central  Google Scholar 

  • Devaiah, S. P., Mahadevappa, G. H., & Shetty, H. S. (2009). Induction of systemic resistance in pearl millet (Pennisetum glaucum) against downy mildew (Sclerospora graminicola) by Datura metel extract. Crop Protect, 28, 783–791.

    Google Scholar 

  • Devi, O. J., & Chhetry, G. K. N. (2013). Evaluation of antifungal properties of certain plants against Drechslera oryzae causing brown leaf spot of rice in Manipur valley. Int. J. Scient. Res. Publ., 3, 1–3.

    CAS  Google Scholar 

  • Dohroo, N. P. (1988). Germplasm reaction of cauliflower to stalk rot (Sclerotinia sclerotiorum). Indian Journal of Plant Pathology, 6, 144.

    Google Scholar 

  • Ekins, M. (1993). The biology of plant pathogenic Sclerotinia species. M. Sc. Thesis, Department of Botany, University of Queensland. 43pp.

  • El-Hadrami, Adam, L. R., El-Hadrami, I., & Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8, 968–987.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghadiri, M. R., Dalili, A., Frotan, A., Zaker, M., Rahmanifard, B., & Dalili, M. (2013). Study on antifungal activity of some salts on growth and dry rot development of Fusarium solani (Mart.) Sacc. American-Eurasian J Agric Environ Sci, 13, 668–672.

    Google Scholar 

  • Grover, R. K., & Moore, J. D. (1962). Toximetric studies of fungicides against the brown rot organism, Sclerotium fructicola and Sclerotium laxa. Phytopathology, 52, 876–880.

    CAS  Google Scholar 

  • Handique, A. K., & Singh, H. B. (1990). Antifungal action of lemongrass oil on some soil-borne plant pathogens. Indian Perfum, 34, 232–234.

    Google Scholar 

  • Harris, R. (2002). Progress with superficial mycoses using essential oils. International Journal of Aromatherapy, 12, 83–91.

    Google Scholar 

  • Hawke, M. A., & Lazarovits, G. (1994). Production and manipulation of individual microsclerotia of Verticillium dahliae for use in studies of survival. Phytopathology, 84, 883–890.

    Google Scholar 

  • Ignjatov, M., Miloševi, D., Nikoli, Z., Gvozdanovi, J., Jovicic, D., & Gordana, Z. (2012). Fusarium oxysporum as causal agent of tomato wilt and fruit rot. Pestic Phytomed, 27, 25–31.

    Google Scholar 

  • Iqbal, M. F., & Iqbal, Z. (2014). Efficacy of fungicides sprayed against rottening of berseem. International Journal of Advanced Multidisciplinary Research, 1, 22–24.

    Google Scholar 

  • Ishii, H. (2006). Impact of fungicide resistance in plant pathogens on crop disease control and agricultural environment. Japan Agricultural Research Quarterly, 40, 205–211.

    CAS  Google Scholar 

  • Jabnoun-Khiareddine, H., Abdallah, R., El-Mohamedy, R., Abdel-Kareem, F., & Gueddes-Chahed, M. (2016). Comparative efficacy of potassium salts against soil-borne and air-borne fungi and their ability to suppress tomato wilt and fruit rots. J Microb Biochem Technol, 8, 045–055.

    CAS  Google Scholar 

  • Kerkeni, A., Remadi, M. D., Tarchoun, N., & Khedher, M. B. (2008). Effect of bacterial isolates obtained from animal manure compost extracts on the development of Fusarium oxysporum f.sp. radicis lycopersici. Asian J Plant Pathol, 2, 15–23.

    Google Scholar 

  • Kheiri, A., Moosawi, J. S. A., Malihipour, A., Saremi, H., & Nikkhah. (2017). A. Synthesis and characterization of chitosan nanoparticles and their effect on Fusarium head blight and oxidative activity in wheat. International Journal of Biological Macromolecules, 102, 526–538.

    CAS  PubMed  Google Scholar 

  • Kohn, L. M. (1979). Delimitation of the economically important plant pathogenic Sclerotinia species. Phytopathology, 69, 881–886.

    Google Scholar 

  • Kumar, S., Chaudhary, V. P., Pathak, S. P., & Kumar, K. (2019). Integrated disease management approaches for stem gall disease of coriander incited by P. macrospores. Int J Chem Stud, 7, 878–881.

    CAS  Google Scholar 

  • Kumbhar, A. S., Padhye, S. B., Saraf, A. P., Mahajan, H. B., Chopade, B. A., & West, D. X. (1991). Novel broad -spectrum metal -based antifungal agents. Correlations amongst the structural and biological properties of copper 2-acetylpyridine N4 -dialkylthiosemicarbazones. Biology of Metals, 4, 3141–3143.

    Google Scholar 

  • Kushwah, B. (2013). Evaluation of fungitoxicity of Beal (Aegle marmelos) extracts against some fungal pathogens. M.Sc. (Ag.) Thesis, College of Agriculture, Gwalior (M.P.). pp 468.

  • Jing, L., Lei, Z., Li, L., Xie, R., Xi, W., Yu, G., Lloyd, W. S., & Zhou, Z. (2014). Antifungal activity of citrus essential oils: A review. Journal of Agricultural and Food Chemistry, 62, 3011–3033. https://doi.org/10.1021/jf5006148.

    Article  CAS  PubMed  Google Scholar 

  • Llorens, E., Mateu, M., & González-Hernández, A. I. (2019). Extract of Mimosa tenuiflora and Quercus robur as potential eco-friendly management tool against Sclerotinia sclerotiorum in Lactuca sativa enhancing the natural plant defences. European Journal of Plant Pathology, 153, 1105–1118. https://doi.org/10.1007/s10658-018-01629-3.

    Article  CAS  Google Scholar 

  • Ma, Z., Yang, L., Yan, H., Kennedy, J. F., & Meng, X. (2013). Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydrate Polymers, 94, 272–277.

    CAS  PubMed  Google Scholar 

  • Malaviya, D. R., Roy, A. K., Kaushal, P., Chakraborti, M., Yadav, A., Khare, A., Dhir, R., Khairnar, D., & George, G. P. (2018). Interspecific compatibility barriers, development of interspecific hybrids through embryo rescue and lineage of Trifolium alexandrinum (Egyptian clover)-important tropical forage legume. Plant Breeding, 137, 655–672.

    CAS  Google Scholar 

  • Malaviya, D. R., Roy, A. K., Kaushal, P., Kumar, B., & Tewari, A. (2008). Genetic similarity among Trifolium species based on isozyme banding pattern. Plant Systematics and Evolution, 276, 125–136.

    CAS  Google Scholar 

  • McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–217.

    Google Scholar 

  • Mdee, L. K., Masoko, P., & Eloff, J. N. (2009). The activity of ectracts of seven common invasive plant species on fungal phytopathogens. South African Journal of Botany, 75, 375–379.

    Google Scholar 

  • Mebdoua, S. (2019). Pesticide residues in fruits and vegetables. In: Mérillon JM., Ramawat K. (eds) Bioactive molecules in food. Reference Series in Phytochemistry. Springer, Cham.

  • Meenatchi, R., Giraddi, R. S., Awaknavar, J. S., & Biradar, D. P. (2009). Effect of food substrates and earthworm species on microbial activity in vermicompost and vermiwash. Karnataka J Agric Sci, 22, 1020–1022.

    Google Scholar 

  • Mete, E. (2009). Comparison of human milk, cow’s milk and infant formulas for their antifungal effects against environmental fungi. Turk J Med Sci, 39, 67–72.

    Google Scholar 

  • Mikaliūnienė, J., Lemežienė, N., Danytė, V., & Supronienė, S. (2015). Evaluation of red clover (Trifolium pretense L.) resistance to Sclerotinia crown and root rot (Sclerotinia trifoliorum) in the laboratory and field conditions. Zemdirbyste-Agriculture, 102, 167–176.

    Google Scholar 

  • Mitchell, T. C., Stamford, T. L. M., Souza, E. L., Lima, E. O., & Carmo, E. S. (2010). Origanum vulgare L. essential oil as inhibitor of potentially toxigenic Aspergilli. Ciência e Tecnologia de Alimentos, 30, 755–760.

    Google Scholar 

  • Muhammad, S., & Amusa, N. A. (2003). In vitro inhibition of growth of some seedling blight inducing pathogens by compost – Inhibiting microbes. African Journal of Biotechnology, 2, 161–164.

    Google Scholar 

  • Nina, A. L., Meffert, A., Antelo, L., Sterner, O., Anke, H., & Weber, R. W. S. (2006). Antiamoebins, myrocin B and the basis of antifungal antibiosis in the coprophilous fungus Stilbella erythrocephala (syn. S. fimetaria). FEMS Microbial Ecology, 55, 105–112.

    Google Scholar 

  • Oziengbe, E. O., & Osazee, J. O. (2012). Antifungal activity of copper sulphate against Colletotrichum gloeosporioides. J Asian Sci Res, 2, 835–839.

    Google Scholar 

  • Pandey, S. (2015). Efficacy of leaf extracts in controlling leaf blast and brown spot in Rice (Oryza sativa L.). Int J Recent Sci Res, 6, 5476–5479.

    Google Scholar 

  • Pandey, P., Kumar, R. & Mishra, P. (2011). Integrated approach for the management of Sclerotinia sclerotiorum (Lib.) de Bary, causing stem rot of chickpea. Indian Phytopathol 64, 37–40.

  • Persaud, R., Khan, A., Isaac, W.-A., Ganpat, W., & Saravanakumar, D. (2019). Plant extracts, bioagents and new generation fungicides in the control of rice sheath blight in Guyana. Crop Protect, 119, 30–37.

    CAS  Google Scholar 

  • Pratt, R. G., Dabney, S. M., & Mays, D. A. (1988). New forage legume hosts Sclerotinia trifoliorum and S. sclerotiorum in the southeastern United States. Plant Disease, 72, 593–596.

    Google Scholar 

  • Prescott, J. M., Burnett, P. A., Saari, E. E., Ransom, J., Bowman, J., De Milliano, W., Singh, R. S. & Geleta, A. B. (1986). Wheat diseases and pests, a guide for field identification. CIMMYT, Mexico D.F. Mexico.

  • Rahman, M. A., Mahmud, T. M. M., Kadir, J., Rahman, A. R., & Begum, M. M. (2008). Antimicrobial activities of chitosan and calcium chloride on in vitro growth of Colletotrichum gloeosporioides from papaya. Pertanika Journal of Tropical Agricultural Science, 31, 223–232.

    Google Scholar 

  • Ravikumar, P. H. S. (2007). Antifungal potency of cow urine. BioSciences, 1, 4–5.

    Google Scholar 

  • Rinez, A., Daami-Remadi, M., Ladhari, A., Omezzine, F., Rinez, I., & Haouala, R. (2013). Antifungal activity of Datura metel L. organic and aqueous extracts on some pathogenic and antagonistic fungi. African Journal of Microbiology Research, 7, 1605–1612.

    Google Scholar 

  • Roy, A. K., Malaviya, D. R., Kaushal, P., Kumar, B., & Tiwari, A. (2004). Interspecific hybridization of T. alexandrinum with T. constantinopolitanum using embryo rescue. Plant Cell Reports, 22, 605–610.

    Google Scholar 

  • Saira, M., Rehman, A., Gleason, M. L., Alam, M. W., Abbas, M. F., Ali, S., & Idreas, M. (2017). First report of Sclerotinia sclerotiorum causing stem amd crown rot of berseem (Trifolium alexandrinum) in Pakistan. Plant Disease, 101, 835.

    Google Scholar 

  • Sales, M. D. C., Costa, H. B., Fernandes, P. M. B., Ventura, J. A., & Meira, D. D. (2016). Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pacific Journal of Tropical Biomedicine, 6, 26–31.

    CAS  Google Scholar 

  • Saxena, P., Shah, N. K., Hasan, N., Pandey, K. C., Faruqui, S. A., Bhaskar, R. B., Padmavati, C., Roy, S. & Azmi, M. I. (2002). Forage plant protection, Bulletin, Indian Grassland and Fodder Research Institute, Jhansi. pp. 38.

  • Silva, C., Guterres, S. S., Weisheimer, V., & Schapoval, E. S. E. (2008). Antifungal activity of the lemon grass oil and citral against Candida spp. The Brazilian journal of infectious diseases: an official publication of the Brazilian Society of Infectious Diseases., 12, 63–66. https://doi.org/10.1590/S1413-86702008000100014.

    Article  Google Scholar 

  • Sinha, R. K., Valani, D., Chauhan, K., & Agarwal, S. (2010). Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: Reviving the dreams of sir Charles Darwin. J Agric Biotech Sustain Dev, 2, 113–128.

    CAS  Google Scholar 

  • Sreenivasa, M. N., & Naik, N. (2011). Impact of bacteria isolated from organic liquid manures on seed germination and seedling vigour index of wheat and soybean. Organic Farming Newsletter, 7, 3–5.

    Google Scholar 

  • Swaminathan, C., Swaminathan, V. & Lakshmi, V. K. (2007). Panchgavya boon to organic farming. International book distributing co. Lucknow p. 332.

  • Tanni, T. R., Datta, J., Hasan, R., Hossain, A., & Haque, M. (2016). Evaluation of botanical and chemical fungicides to control foot and root rot of chickpea. International Journal of Plant & Soil Science, 12, 1–7.

    Google Scholar 

  • Tejveer, S., Radhakrishna, A. D., Nayak, S., & Malaviya, D. R. (2019). Genetic improvement of Berseem (Trifolium alexandrinum) in India: Current status and prospects. International Journal of Current Microbiology and Applied Sciences, 8, 3028–3036.

    Google Scholar 

  • Tripathi, A. N., & Tripathi, S. C. (2009). Management of Sclerotinia stem rot of Indian mustard through plant extracts. Int J Plant Res, 22, 1–3.

    Google Scholar 

  • Tripathi, D., Raikhy, G., & Kumar, D. (2019). Chemical elicitors of systemic acquired resistance –salicylic acid and its functional analogs. Curr Plant Biol. https://doi.org/10.1016/j.cpb.2019.03.002.

  • Vincent, V. H. (1947). Distortion of fungal hyphae in the presence of certain inhibitors. Nature, 59, 850.

    Google Scholar 

  • Wang, S. Y., Chen, P. F., & Shang-Tzen, C. (2005). Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresource Technology, 96, 813–818.

    CAS  PubMed  Google Scholar 

  • Yogi, B., Gupta, S. K., & Mishra, A. (2016). Calotropis procera (Madar): A medicinal plant of various therapeutic uses - a review. Bull Environ Pharm Life Sci, 5, 74–81.

    CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the Head of the Department of Plant Breeding and Genetics, PAU, Ludhiana for providing financial assistance and all laboratory and outdoor facilities. We gratefully acknowledge the support through Indian Council of Agricultural Research (ICAR) AICRP on Forage Crops and Utilization. We also gratefully acknowledge anonymous reviewers for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ashlesha Atri: Planning and conducting of field and laboratory experiments, data recording, manuscript writing, Harpreet Kaur Cheema: Compilation of data, preparation of tables and figures, Narinder Singh: Editing and corrections of manuscript.

Corresponding author

Correspondence to Ashlesha Atri.

Ethics declarations

Human and animal rights

This study did not involve human participants and/or animals.

Informed consent

All authors consent to this submission.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atri, A., Cheema, H.K. & Singh, N. Ecofriendly management of stem rot of berseem caused by Sclerotinia trifoliorum. Eur J Plant Pathol 160, 649–662 (2021). https://doi.org/10.1007/s10658-021-02273-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02273-0

Keywords

Navigation