Skip to main content

Population structure and genetic diversity of Dothistroma septosporum in Slovakia

Abstract

Dothistroma needle blight (DNB) is a serious pine disease present worldwide caused by the ascomycetous fungi Dothistroma septosporum and Dothistroma pini. Based on multiplex PCR analysis of 11 microsatellite markers screened on 253 D. septosporum isolates obtained from 32 sites across Slovakia, a total of 137 unique multilocus haplotypes (MLHs) were detected. The majority of MLHs (n = 91) were represented by a single isolate, but 13 MLHs were found at two different sites, and in some cases, these were separated by large distances. Four population clusters were identified using a discriminant analysis of principal components (DAPC). The genetic clusters obtained from the DAPC were mixed throughout the country and were not restricted to particular host species. Although both mating types of D. septosporum were found to be in an almost perfect 1:1 ratio in both the non-clone-corrected and clone-corrected datasets, random mating was rejected in the entire dataset. Random mating was only supported in the Pinus mugo group planted in urban areas and on a smaller spatial scale in two sites (Kálnica and Litava) using the clone-corrected dataset. These findings suggest a mixed mode of reproduction with an important component of sexual reproduction, although the sexual stage of the fungus (teleomorph) has not been physically observed in Slovakia yet. The examination of spatial relationships using spatial principal component analyses and the presence of isolation-by-distance together with relatively high genetic diversity suggests the pathogen has been long established in Slovakia and spread naturally across the landscape. However, the weak population structure and findings of identical clones at widely separated sites strongly suggests some degree of human assisted dispersal.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

All data are available in supplementary material.

Code availability

(software application or custom code)Not applicable.

References

  • Adamson, K., Mullett, M., Solheim, H., Barnes, I., Müller, M., Hantulae, J., Vuorinen, M., Kačergius, A., Markovskaja, S., Musolini, D., Davydenkoj, K., Kečal, K., Ligia, K., Prieditem, R., Millbergn, H., & Drenkhan, R. (2018). Looking for relationships between the populations of Dothistroma septosporum in northern Europe and Asia. Fungal Genetics and Biology, 110(2018), 15–25. https://doi.org/10.1016/j.fgb.2017.12.001.

    Article  PubMed  Google Scholar 

  • Agapow, P. M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 1(1–2), 101–102. https://doi.org/10.1046/j.1471-8278.2000.00014.x.

    Article  CAS  Google Scholar 

  • Barnes, I., Crous, P. W., Wingfield, M. J., & Wingfield, B. D. (2004). Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Studies in Mycology, 50, 551–565.

    Google Scholar 

  • Barnes, I., Cortinas, M. N., Wingfield, M. J., & Wingfield, B. D. (2008). Microsatellite markers for the red band needle blight pathogen, Dothistroma septosporum. Molecular Ecology Resources, 8, 1026–1029. https://doi.org/10.1111/j.1755-0998.2008.02142.x.

  • Barnes, I., Wingfield, M. J., Kirisits, T., & Wingfield, B. D. (2011). Needle blight of pine caused by two species of Dothistroma in Hungary. Forest Pathology, 41, 361–369. https://doi.org/10.1111/j.1439-0329.2010.00689.x.

    Article  Google Scholar 

  • Barnes, I., Wingfield, M. J., Carbone, I., Kirisits, T., & Wingfield, B. (2014). Population structure and diversity of an invasive pine needle pathogen reflects anthropogenic activity. Ecology and Evolution, 4(18), 3642–3661. https://doi.org/10.1002/ece3.1200.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bednářová, M., Palovčíková, D., & Jankovský, L. (2006). The host spectrum of Dothistroma needle blight Mycosphaerella pini E. Rostrup – new hosts of Dothistroma needle blight observed in the Czech Republic. Journal of Forest Science, 52, 30–36. https://doi.org/10.17221/4484-JFS.

    Article  Google Scholar 

  • Blatný, T., & Šťastný, T. (1959). Prirodzené rozšírenie lesných drevín na Slovensku (402 p). Bratislava: SVPL.

    Google Scholar 

  • Boroń, P., Lenart-Boroń, A., & Mullett, M. (2016). The distribution of Dothistroma septosporum and its mating types in Poland. Forest Pathology, 46, 489–496. https://doi.org/10.1111/efp.12262.

    Article  Google Scholar 

  • Boroń, P., Lenart-Boroń, A., Mullett, M., Kraj, W., Grad, B., & Kowalski, T. (2019). Temporal changes in the population structure of Dothistroma septosporum at the site of the first recorded outbreak in Poland. Plant Pathology, 68, 383–391. https://doi.org/10.1111/ppa.12947.

    Article  CAS  Google Scholar 

  • Brown, A. H. D., Feldman, M. W., & Nevo, E. (1980). Multilocus structure of natural populations of Hordeum spontaneum. Genetics, 96(2), 523–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butin, H. (1985). Teleomorph-und anamorph-Entwicklung von Scirrhia pini Funk & Parker auf Nadeln von Pinus nigra Arnold. [Teleomorph and anamorph development of Scirrhia pini Funk & Parker of needles from Pinus nigra Arnold]. In Sydowia, Annales Mycologici Ser. II, 38, 20–27.

    Google Scholar 

  • Chen, R. S., & McDonald, B. A. (1996). Sexual reproduction plays a major role in the genetic structure of populations of the fungus Mycosphaerella graminicola. Genetics, 142, 1119–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drenkhan, R., Hantula, J., Vuorinen, M., Jankovský, L., & Müller, M. M. (2013). Genetic diversity of Dothistroma septosporum in Estonia, Finland and Czech Republic. European Journal of Plant Pathology, 136(1), 71–85. https://doi.org/10.1007/s10658-012-0139-6.

    Article  Google Scholar 

  • Drenkhan, R., Tomešová-Haataja, V., Fraser, S., Bradshaw, R. E., Vahalík, P., Mullett, M. S., et al. (2016). Global geographic distribution and host range of Dothistroma species: A comprehensive review. Forest Pathology, 46, 408–442. https://doi.org/10.1111/efp.12290.

    Article  Google Scholar 

  • Ennos, R. A. (2001). The introduction of lodgepole pine as a major forest crop in Sweden: Implications for host-pathogen evolution. Forest Ecology and Management, 141, 85–96. https://doi.org/10.1016/S0378-1127(00)00491-6.

    Article  Google Scholar 

  • Foffová, E., & Foff, V. (2007). Sypavky borovíc spôsobené fytokaranténnymi hubami z rodu Mycosphaerella na Slovensku [Needle blight of pines caused by quarantine fungi from genus Mycosphaerella in Slovakia]. In M. Kodrík & P. Hlaváč (Eds.), Ochrana lesa 2007 (pp. 59–64). Zvolen: Technická univerzita.

    Google Scholar 

  • Ghelardini, L., Luchi, N., & Pecori, F. (2017). Ecology of invasive forest pathogens. Biological Invasions, 19, 3183–3200. https://doi.org/10.1007/s10530-017-1487-0.

    Article  Google Scholar 

  • Groenewald, M., Barnes, I., Bradshaw, R. E., Brown, A., Dale, A., Groenewald, J. Z., et al. (2007). Characterization and worldwide distribution of the mating type genes in the Dothistroma needle blight pathogens. Phytopathology, 97, 825–834. https://doi.org/10.1094/PHYTO-97-7-0825.

    Article  CAS  PubMed  Google Scholar 

  • Grünwald, N. J., Goodwin, S. B., Milgroom, M. G., & Fry, W. E. (2003). Analysis of genotypic diversity data for populations of microorganisms. Phytopathology, 93(6), 738–746. https://doi.org/10.1094/PHYTO.2003.93.6.738.

    Article  PubMed  Google Scholar 

  • Hanso, M., & Drenkhan, R. (2013). Simple visualization of climate change for improving the public perception in forest pathology. Forestry Studies, 58, 37–45. https://doi.org/10.2478/fsmu-2013-0004.

    Article  Google Scholar 

  • Harrington, T. C., & Wingfield, M. J. (1998). Disease and the ecology of indigenous and exotic pines. In D. M. Richardson (Ed.), Ecology and biogeography of Pinus (p. 548). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Holubčík, M. (1976). Výsledky introdukcie a pestovanie ihličnatých drevín v podmienkach Slovenska [Results of introduction and cultivation of coniferous trees in the conditions of Slovakia]. In F. Benčať (Ed.), Štúdie o ihličnatých drevinách (pp. 183–192). Bratislava: VEDA, SAV.

    Google Scholar 

  • Jankovský, L., Šindelková, M., & Palovčíková, D. (2000). Karanténní sypavky Mycosphaerella pini and M. dearnessii [quarantine needle casts Mycosphaerella pini and M. dearnessii]. Lesnická Práce, 79, 370–372 [In Czech].

    Google Scholar 

  • Jánošíková, Z., Ondrušková, E., Barta, M., Ostrovský, R., Kádasi Horáková, M., Pastirčáková, K., Kobza, M., & Adamčíková, K. (2018). The hosts and geographic range of Dothistroma needle blight in Slovakia. Forest Pathology, 48(3), e12421. https://doi.org/10.1111/efp.12421.

    Article  Google Scholar 

  • Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129.

    Article  CAS  PubMed  Google Scholar 

  • Jombart, T., & Collins, C. (2015). A tutorial for discriminant analysis of principal components (DAPC) using adegenet 2.0. 0. London: Imperial College London. MRC Centre for Outbreak Analysis and Modelling. http://adegenet.r-forge.r-project.org/files/tutorial-dapc.pdf. Accessed 16 June 2016.

  • Jombart, T., Devillard, S., Dufour, A. B., & Pontier, D. (2008). Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity, 101(1), 92–103.

    Article  CAS  PubMed  Google Scholar 

  • Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94. https://doi.org/10.1186/1471-2156-11-94.

  • Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2, e281. https://doi.org/10.7717/peerj.281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karadžić, D. (1989). Dothistroma needle blight in Yugoslavia. IUFRO WP S2.06.04 foliage disease conference, Carlisle, Pennsylvania, pp. 52–56.

  • Kiel, S. (2016). A biogeographic network reveals evolutionary links between deep-sea hydrothermal vent and methane seep faunas. Proceedings of the Royal Society: Biological Sciences, 283(1844), 20162337. https://doi.org/10.1098/rspb.2016.2337.

    Article  CAS  PubMed Central  Google Scholar 

  • Kivelä, M., Arnaud-Haond, S., & Saramäki, J. (2015). EDENetworks: A user-friendly software to build and analyse networks in biogeography, ecology and population genetics. Molecular Ecology Resources, 15, 117–122. https://doi.org/10.1111/1755-0998.12290.

    Article  PubMed  Google Scholar 

  • Kowalski, T., & Jankowiak, R. (1998). First record of Dothistroma septospora (Dorog.) Morelet in Poland: A contribution to the symptomatology and epidemiology. Phytopathologia Polonica, 16, 15–29.

    Google Scholar 

  • Krippel, E. (1986). Postglaciálny vývoj vegetácie. [Postglacial development of vegetation]. Bratislava: VEDA 312s.

    Google Scholar 

  • Kunca, A., & Foffová, E. (2000) Ohrozenie porastov borovice čiernej fytokaranténnym patogénom Dothistroma septospora (Dorog.). [The risk of infestation of Pinus nigra stands by quarantine pathogen Dothistroma septospora (Dorog.) Morelet.] In J. Varínsky (Ed.) Aktuálne probémy v ochrane lesa [Current problems in forest protection]. Proceedings of the Aktuálne problémy v ochrane lesa  [Current problems in forest protection] Conference, Banská Štiavnica, Slovakia, 17.4-18.4.2000. LVÚ Zvolen, 136–139. [in Slovak]

  • Laffers, A. (1980). Rast domácich a cudzích proveniencií borovice sosny na viatych pieskoch záhorskej nížiny. [Growth of domestic and foreign provenances of pine on the loose sands of the Záhorská lowland]. Lesnícky časopis, 26(3), 227–248.

    Google Scholar 

  • Laffers, A. (1988). Premenlivosť borovice sosny spišskej oblasti [Variability of Pinus sylvestris in Spiš area]. Lesnictví, 34(9), 781–796.

    Google Scholar 

  • Markovskaja, S., Raitelaitytė, K., Kačergius, A., Kolmakov, P., & Vasilevich, V. (2020). Occurrence of Dothistroma needle blight in Lithuania and Belarus: The risk posed to native scots pine forests. Forest Pathology, 50, e12626. https://doi.org/10.1111/efp.12626.

    Article  Google Scholar 

  • McDonald, J. H. (2014). Handbook of biological statistics (3rd ed.). Baltimore, Maryland: Sparky House Publishing.

    Google Scholar 

  • McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379. https://doi.org/10.1146/annurev.phyto.40.120501.101443.

    Article  CAS  PubMed  Google Scholar 

  • Milgroom, M. G. (1996). Recombination and the multilocus structure of fungal populations. Annual Review of Phytopathology, 34(1), 457–477.

    Article  CAS  PubMed  Google Scholar 

  • Ministri of Environment of the Slovak Republic (2018). Stratégia adaptácie Slovenskej Republiky na zmenu klímy. [Adaptation Strategy of the Slovak Republic on Climatic Change]. https://www.minzp.sk/files/odbor-politiky-zmeny-klimy/strategia-adaptacie-sr-zmenu-klimy-aktualizacia.pdf in Slovak.

  • Mullett, M. S., & Fraser, S. (2016). Infection of Cedrus species by Dothistroma septosporum. Forest Pathology, 46, 551–554. https://doi.org/10.1111/efp.12214.

    Article  Google Scholar 

  • Mullett, M. S., Brown, A. V., & Barnes, I. (2015). Population structure and reproductive mode of Dothistroma septosporum in the Brittany peninsula of France. European Journal of Plant Pathology, 143(2), 261–275. https://doi.org/10.1007/s10658-015-0678-8.

    Article  Google Scholar 

  • Mullett, M. S., Tubby, K. V., Webber, J. F., & Brown, A.V (2016). A reconsideration of natural dispersal distances of the pine pathogen. Plant Pathology, 65 (9),1462-1472. https://doi.org/10.1111/ppa.12522.

  • Mullett, M. S., Brown, A. V., Fraser, S., Baden, R., & Tubby, K. V. (2017). Insights into the pathways of spread and potential origins of Dothistroma septosporum in Britain. Fungal Ecology, 26, 85–98. https://doi.org/10.1016/j.funeco.2017.01.002.

    Article  Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nožička, J. (1969). Zavadění borovice černé (Pinus nigra Arnold) v českých zemích [Introduction of P. nigra in Czechoslovakia]. Práce VÚLHM, 37, 109–124.

    Google Scholar 

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2013). Vegan: Community ecology package. https://cran.r-project.org/web/packages/vegan/index.html. Accessed 16 June 2016.

  • Ondrušková, E. (2019) Dothistroma septosporum mating types observed in Slovakia. In Abstract book: XVIII congress of European mycologists (p. 220). Warsaw: Polish Mycological Society, 2019. ISBN 978-83-940505-5-0. http://www.ptmyk.pl/wp-content/uploads/2019/09/Abstract_book_final_strona29.9.2019.pdf (congress of European mycologists).

  • Ondrušková, E., Hečková, Z., Kádasi Horáková, M., Koltay, A., Ostrovský, R., Pažitný, J., & Adamčíková, K. (2017). Distribution and characterization of Dothistroma needle blight pathogens on Pinus mugo in Slovakia. European Journal of Plant Pathology, 148, 283–294. https://doi.org/10.1007/s10658-016-1088-2.

    Article  Google Scholar 

  • Ondrušková, E., Hečková-Jánošíková, Z., Adamčík, S., Kádasi Horáková, M., Rakúsová-Sládková, D., & Adamčíková, K. (2018). Needle blight caused by Dothistroma pini in Slovakia: Distribution, host range and mating types. Scandinavian Journal of Forest Research, 33(7), 650–656. https://doi.org/10.1080/02827581.2018.1482954.

    Article  Google Scholar 

  • Pastirčáková, K., Ivanová, H., & Pastirčák, M. (2014). Druhová diverzita húb na boroviciach (Pinus spp.) v mestskej a mimomestskej vegetácii [Species diversity of fungi on pines (Pinus spp.) in urban and extra-urban vegetation]. In M. Barta & P. Ferus (Eds.), Dendrologické dni v Arboréte Mlyňany SAV: Prostredie a vitalita drevín (pp. 150–157). Vieska nad Žitavou: Arborétum Mlyňany SAV. ISBN:978-80-971113-2-8. [in Slovak]

  • Peakall, R., & Smouse, P. E. (2006). GENALEX 6: Genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288–295.

    Article  Google Scholar 

  • Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrak, F. (1961). The Lecanosticta disease of pines in Austria. Sydowia, 15, 252–256 [In German].

    Google Scholar 

  • R Development Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing http://www.R-project.org/.

    Google Scholar 

  • Sarvaš, M., Bruchánik, R., Hoffmann, J., Chválová, K., & Ježovič, V. (2010). obhospodarovanie génových základní. [Basic characteristics of forest trees – ecological requirements, morphology, forest seed production and nursery, management of gene bases]. Zvolen: NLC 82 s.

    Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688. https://doi.org/10.1038/163688a0.

    Article  Google Scholar 

  • Stoddart, J. A., & Taylor, J. F. (1988). Genotypic diversity: Estimation and prediction in samples. Genetics, 118(4), 705–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturrock, R. N. (2006). Climate change effects on forest diseases: An overview. In M. B. Jackson (Ed.), 2007. Proceedings of the 54th annual Western international forest disease work conference; 2006 October 2–6; Smithers, BC (pp. 51–55). Missoula, MT: US Department of Agriculture, Forest Service, Forest Health Protection https://irp-cdn.multiscreensite.com/1463fd0a/files/uploaded/WIFDWC2006.pdf.

    Google Scholar 

  • Szabó, I. (1997). Occurrence of Dothistroma septospora in Austrian pine plantation. Erdészeti és Gazdászati Lapok, 132, 44–45.

    Google Scholar 

  • Szpiech, Z. A., Jakobsson, M., & Rosenberg, N. A. (2008). ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics, 24(21), 2498–2504. https://doi.org/10.1093/bioinformatics/btn478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomšovský, M., Tomešová, V., Palovčíková, D., Kostovčík, M., Rohrer, M., Hanáček, P., & Jankovský, L. (2013). The gene flow and mode of reproduction of Dothistroma septosporum in the Czech Republic. Plant Pathology, 62(1), 59–68. https://doi.org/10.1111/j.1365-3059.2012.02625.x.

    Article  Google Scholar 

  • Turis, P., & Valachovič, M. (2014). Sekundárne lesné spoločenstvá s Pinus nigra na Slovensku. [Secondary woody communities with Pinus nigra in Slovakia]. Acta Carpatica Occidentalis, 5, 33–45.

    Google Scholar 

  • Watt, M. S., Kriticos, D. J., Alcatraz, S., Brown, A. V., & Leriche, A. (2009). The hosts and potential geographic range of Dothistroma needle blight. Forest Ecology and Management, 257, 1505–1519.

    Article  Google Scholar 

  • Welsh, C., Lewis, K. J., & Woods, A. J. (2014). Regional outbreak dynamics of Dothistroma needle blight linked to weather patterns in British. Columbia. Canadian Journal of Forest Research, 44, 212–219. https://doi.org/10.1139/cjfr-2013-0387.

    Article  Google Scholar 

  • Wingfield, M. J., Brockerhoff, E. G., Wingfield, B. D., & Slippers, B. (2015). Planted forest health: The need for a global strategy. Science, 349(6250), 832–836. https://doi.org/10.1126/science.aac6674.

    Article  CAS  PubMed  Google Scholar 

  • Woods, A. J., Martín-García, J., Bulman, L., Vasconcelos, M. W., Boberg, J., La Porta, N., et al. (2016). Dothistroma needle blight, weather and possible climatic triggers behind the disease’s recent emergence. Forest Pathology, 46, 443–452. https://doi.org/10.1111/efp.12248.

    Article  Google Scholar 

  • Zhan, J., Pettway, R. E., & McDonald, B. A. (2003). The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genetics and Biology, 38(3), 286–297. https://doi.org/10.1016/S1087-1845(02)00538-8.

    Article  CAS  PubMed  Google Scholar 

  • Zúbrik, M., Kunca, A., Turčani, M., Vakula, J., & Leontovyč, R. (2006). Invasive and quarantine pests in forests in Slovakia. OEPP/EPPO Bulletin, 36(2), 402–408. https://doi.org/10.1111/j.1365-2338.2006.01025.x.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to our laboratory technician Monika Halandová, who patiently helped during isolations. Forests engineers Ing. Ivan Jurík and Ing. Jozef Habara are thanked for their help in the field. This study is based upon work from a Short-Term Scientific Mission Grant EU COST action FP1102 DIAROD. The study was financially supported by the Forestry Commission, United Kingdom, by the European Regional Development Fund, Project Phytophthora Research Centre Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000453, by the Slovak Research and Development Agency bilateral Slovakia – France project No. SK-FR-2017-0025, and by Scientific Grant Agency VEGA of the Slovak Academy of Sciences No. 2/0077/18.

Funding

The study was financially supported by the Forestry Commission, United Kingdom, by the European Regional Development Fund, Project Phytophthora Research Centre Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000453, by the Slovak Research and Development Agency bilateral Slovakia – France project No. SK-FR-2017-0025, and by Scientific Grant Agency VEGA of the Slovak Academy of Sciences No. 2/0077/18.

Author information

Authors and Affiliations

Authors

Contributions

(optional: Please review the submission guidelines from the journal whether statements are mandatory)Not applicable.

Corresponding author

Correspondence to Zuzana Jánošíková.

Ethics declarations

Ethics approval

This material is the authors’ own original work, which has not been previously published elsewhere.

All the co-authors have agreed for authorship, read and approved the manuscript, and given consent for submission and subsequent publication of the manuscript. All authors have been personally and actively involved in substantial work leading to the paper.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest/competing interests

The authors declare that they have no conflicts of interest.

Supplementary Information

ESM 1

(XLSX 37 kb)

ESM 2

(XLSX 22 kb)

ESM 3

(XLSX 10 kb)

Supplementary Figure 1

a/b/c: (Population structure and genetic diversity of Dothistroma septosporum in Slovakia, European Journal of Plant Pathology, Jánošíková, Z., Dutech, C., Ondrušková, E., Adamčíková, K., Mullett, M.; Slovak Academy of Sciences, Institute of Forest Ecology, Department of Plant Pathology and Mycology , Akademická 2, SK-94901 Nitra, Slovak Republic; janosikova@ife.sk). Discriminant analysis of principal components DAPC results: (a) the optimal number of clusters (K) as determined by K-means, the Bayesian Information Criterion (BIC) is plotted for K = 1–10, the elbow in the graph at K = 4 indicates this to be the most suitable value, (b) principal component scatter plot of all individuals, based on the DAPC output using 5 principal components, (c) estimated population structure by discriminant analyses of principal components. The proportion of four genetic groups among geographical regions and host. Names of localities are given by codes e.g. Brusno_PM_u, the first part of code refers to the name of locality, the second to host: PM – Pinus mugo, PS – P. sylvestris, PN – P. nigra, PA – Pinus aristata, PiA – Picea abies, the third refers to the habitat: u – urban, nr – natural regeneration, fp – forest plantation, x – Christmas tree plantation, a – arboretum, n – nursery, Vertical bars represent individual isolates and are coloured according to cluster: Cluster1 – blue, Cluster2 – brown, Cluster3 – yellow, Cluster4 – red. (PDF 383 kb)

Supplementary Figure 2

Pie charts representing the proportion of DAPC clusters by main host species. Colour coding of clusters: Cluster1 – blue, Cluster2 – brown, Cluster3 – yellow, Cluster4 – red (Population structure and genetic diversity of Dothistroma septosporum in Slovakia, European Journal of Plant Pathology, Jánošíková, Z., Dutech, C., Ondrušková, E., Adamčíková, K., Mullett, M.; Slovak Academy of Sciences, Institute of Forest Ecology, Department of Plant Pathology and Mycology, Akademická 2, SK-94901 Nitra, Slovak Republic; janosikova@ife.sk (PDF 176 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jánošíková, Z., Dutech, C., Ondrušková, E. et al. Population structure and genetic diversity of Dothistroma septosporum in Slovakia. Eur J Plant Pathol 160, 771–787 (2021). https://doi.org/10.1007/s10658-021-02266-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02266-z

Keywords