Skip to main content
Log in

Resistance to demethylation inhibitors in Cercospora beticola, a pathogen of sugar beet in Japan, and development of unique cross-resistance patterns

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

A Correction to this article was published on 12 February 2021

This article has been updated

Abstract

Cercospora beticola Sacc. is the most destructive pathogen of sugar beet (Beta vulgaris L.) and causes Cercospora leaf spot (CLS). Since 1986, fungicides that function as demethylation inhibitors (DMIs) have been used to control CLS in Hokkaido, which is the only area in Japan where sugar beet is grown. Reduced sensitivity of C. beticola to DMI fungicides, based on the half maximal effective concentration (EC50), was first reported in Hokkaido in 1999, however the fungicides continued to be used effectively until 2014. In a field experiment in 2016, we found that the efficacy of difenoconazole against the field population of C. beticola was greatly reduced. We subsequently tested over 600 isolates collected throughout the sugar beet-growing region of Hokkaido and revealed that the mean resistance factor of four DMI fungicides (difenoconazole, fenbuconazole, tebuconazole, and tetraconazole) were high, which indicates that DMI-resistant isolates were distributed throughout the beet cultivation area. Moreover, we identified three types of isolates that have unique cross-resistance patterns between difenoconazole and fenbuconazole, with their EC50 rate (= difenoconazole EC50/ fenbuconazole EC50) converged to 31, 4.0, and 0.40, respectively, which appeared to be affected by the local history of fungicide usage. The F144L substitution in CbCYP51 was only found in the group whose EC50 rate was 0.40. This is the first report of DMI resistance in C. beticola in Japan, and the findings in this study could contribute to our understanding of the mechanism of DMI resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  • Bolton, M. D., Birla, K., Rivera-Varas, V., Rudolph, K. D., & Secor, G. A. (2012). Characterization of CbCyp51 from field isolates of Cercospora beticola. Phytopahol, 102, 298–305.

    Article  CAS  Google Scholar 

  • Cañas-Gutiérrez, G. P., Angarita-Velásquez, M. J., Restrepo-Flórez, J. M., Rodríguez, P., Moreno, C. X., & Arango, R. (2009). Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis. Pest Management Science, 65, 892–899.

    Article  Google Scholar 

  • Chikuo, Y., Sugimoto, T., Kanzawa, K., & Uchino, H. (1984). Occurrence of Kasugamycin-resistant strains of Cercospora beticola in sugar beet. Ann Phytopath Soc Japan, 50, 637–640.

    Article  Google Scholar 

  • Clement, M., Snell, Q., Walke, P., Posada, D., Crandall, K. (2002) TCS: Estimating gene genealogies. Proc 16th Int Parallel Distrib Process Symp 2:184.

  • Cools, H. J., & Fraaije, B. A. (2013). Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Management Science, 69, 150–155.

    Article  CAS  Google Scholar 

  • Cools, H. J., Hawkins, N. J., & Fraaije, B. A. (2013). Constraints on the evolution of azole resistance in plant pathogenic fungi. Plant Pathology, 62, 36–42.

    Article  CAS  Google Scholar 

  • Fraaije, B. A., Cools, H. J., Motteram, J., Clark, W. S., & Lucas, J. A. (2007). A novel substitution I381V in the sterol 14 α-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides. Molecular Plant Pathology, 8, 245–254.

    Article  CAS  Google Scholar 

  • FRAC (Fungicide Resistance Action Committee) (2019) FRAC pathogen risk list. https://www.frac.info/docs/default-source/publications/pathogen-risk/frac-pathogen-list-2019.pdf. Accessed 2020.

  • FRAC (Fungicide Resistance Action Committee) (2018) FRAC statement on multisite fungicides. https://www.frac.info/docs/default-source/publications/statement-on-multisite-fungicides/frac-statement-on-multisite-fungicides-2018.pdf?sfvrsn=3c25489a_2. Accessed 2020.

  • Frankel, O., Cadle-Davidson, L., Wilcox, W. F., & Milgroom, M. G. (2015). Mechanizms of resistance to an azole fungicide in the grapevine powdery mildew fungus, Erisiphe necator. Phytopathol, 105, 370–377.

    Article  Google Scholar 

  • Hellin, P., King, R., Urban, M., Hammond-Kosack, K. E., Legrève, A. (2018) The adaptation of Fusarium culmorum to DMI fungicides is mediated by major transcriptome modifications in response to azole fungicide, including the overexpression of a PDR transporter (FcABC1). Frontiers in Microbiol 9: (1385).

  • Hermann, D., & Stenzel, K. (2019). FRAC mode-of-action classification and resistance risk of fungicides. In P. Jeschke, M. Witschel, W. Krämer, & U. Schimer (Eds.), Modern crop protection compounds (pp. 589–608). Mannheim: Wiley.

    Chapter  Google Scholar 

  • Hikota, T., Hirata, T., Hirata, A., Uchino, H., & Watanabe, H. (1999). Efficacy of difenoconazole against Cercospora leaf spot on sugar beet (abstract in Japanese). Jpn J Phytopathol, 65, 403.

    Google Scholar 

  • Horita, H., Yasuoka, S., & Abe, H. (1996). Disease spread of Cercospora leaf spot in sugar beet and the use of proportion of disease plant as monitoring method (in Japanese). Hokunou, 63, 78–85.

    Google Scholar 

  • Iketani, M. S., & Iketani, S. (2015). Concept for control of Cercospora leaf spot of sugar beet to cope with climate change (abstract in Japanese). Jpn J Phytopathol, 81, 93.

    Google Scholar 

  • Iketani, S., Ohnami, M., & Yamazaki, H. (2016). A new sugar beet variety ‘Angy’ (in Japanese). Bulletin of Hokkaido Reser Org Agri Exper Stat, 100, 77–81.

    Google Scholar 

  • Jacobson, B. J., Franc, G. D. (2009) Cercospora leaf spot. In: Harveson, R. M., Hanson, L. E., Hein, G. L. (Ed.), Compendium of Beet disease and pests, 2nd edn (pp. 7–10). American phytopathological society.

  • Karaoglanidis, G. S., Ioannidis, P. M., & Thanasoulopoulos, C. C. (2000). Reduced sensitivity of Cercospora beticola isolates to sterol-demethylation-inhibiting fungicides. Plant Pathology, 49, 567–572.

    Article  CAS  Google Scholar 

  • Karaoglanidis, G. S., & Thanasoulopoulos, C. C. (2003). Cross-resitance patterns among sterol biosynthesis inhibiting fungicides (SBIs) in Cercospora beticola. European Journal of Plant Pathology, 109, 929–934.

    Article  CAS  Google Scholar 

  • Kayamori, M., Sasaki, J., Matsui, R., Shinmura, A., Horita, H., & Satou, M. (2012). First report of downy mildew of carnation caused by Peronospora dianthicola in Japan. Journal of General Plant Pathology, 78, 364–367.

    Article  Google Scholar 

  • Kayamori, M., Shimizu, M., Yamana, T., Komatsu, T., Iketani, M. S., Shinmura, A., Sasaki, J., Kozawa, T., Notsu, A., & Yasuoka, S. (2020). First report of QoI resistance in Cercospora beticola in sugar beet in Japan. Journal of General Plant Pathology, 86, 149–153.

    Article  CAS  Google Scholar 

  • Khan, J., del Rio, L. E., Nelson, R., Rivera-Varas, V., & Secor, G. A. (2008). Survival, dispersal, ad primary infection site for Cerocospora beticola in sugar beet. Plant Disease, 92, 741–745.

    Article  CAS  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.

    Article  CAS  Google Scholar 

  • Kondo, Y., Sato, Y., Adachi, T., Otake, M., & Saito, H. (2016). Characteristics of new sugar beet variety “2K314” (in Japanese). Proc Japan Soc Sugar Beet Technol, 57, 23–24.

    Google Scholar 

  • Leigh, J. W., & Bryant, D. (2015). PopART: Full-feature softwawre for haplotype network construction. Methods in Ecology and Evolution, 6, 1110–1116.

    Article  Google Scholar 

  • Ma, Z., Proffer, T. J., Jacobs, J. L., & Sundin, G. W. (2006). Overexpression of the 14α-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Applied and Environmental Microbiology, 72, 2581–2585.

    Article  CAS  Google Scholar 

  • Mullins, J. G. L., Parker, J. E., Cools, H. J., Togawa, R. C., Lucas, J. A., Fraaife, B. A., Kelly, D. E., & Kelly, S. L. (2011). PLoS ONE, 6(6), e20973. https://doi.org/10.1371/journal.pone.0020973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangel, L. I., Spanner, R. E., Ebert, M. K., Pethybridge, S. J., Stukenbrock, E. H., Jonge, R., Secor, G. A., & Bolton, M. D. (2020). Cercospora beticola: The intoxicating lifestyle of the leaf spot pathogen of sugar beet. Molecular Plant Pathology, 21, 1020–1041.

    Article  CAS  Google Scholar 

  • Secor, G., Rivera, V. V., Khan, M. F. R., & Gudmestad, N. C. (2010). Monitoring fungicide sensitivity of Cercospora beticola of sugar beet for disease management decisions. Plant Disease, 94, 1272–1282.

    Article  Google Scholar 

  • Secor, G., Rivera, V., Bolton, M. (2012) Sensitivity of Cercospora beticola to foliar fungicides in 2011. 2011 Sugarbeet Res. Ext. Rep. N. D. State Univ. Fargo: Online.

  • Secor, G., Rivera, V., Khan, M. (2019) Sensitivity of Cercospora beticola to foliar fungicides in 2018. 2018 Sugarbeet Res Ext Rep N D State Univ Fargo 49:191-198.

  • Shimizu, M. (2007). Decreased sensitivity to DMI-fungicide in Cercospora beticola, the causal fungus of Cercospora leaf spot on sugar beet (in Japanese). Plant Protection, 61, 421–425.

    Google Scholar 

  • Shrestha, S., Neubauer, J., Spanner, R., Natwick, M., Rios, J., Metz, N., Secor, G. A., & Bolton, M. D. (2020). Rapid detection of Cercospora beticola in suger beet and mutations associated with fungicide resistance using LAMP or probe-based qPCR. Plant Disease, 104, 1654–1661.

    Article  CAS  Google Scholar 

  • Spanner, R., Taliadoros, D., Richards, J., Rivera-Varas, V., Neubauer, J., Natwick, M., Hamilton, O., Vaghefi, N., Pethybridge, S., Secor, G. A., Friesen, T. L., Stukenbrock, E. H., Bolton, M. D. (2020) Genome-wide association studies reveal the complex genetic architecture of DMI fungicide resistance in Cercospora beticola. bioRxiv preprint https://doi.org/10.1101/2020.11.12.379818

  • Trkulja, N., Milosavljević, A., Atanisavljevic, R., Mitrović, M., Jović, J., Toševski, I., & Bošković, J. (2015). Occurrence of Cercospora beticola populations resistant to benzimidazoles and demethylation-inhibiting fungicides in Serbia and their impact on disease management. Crop Protection, 75, 80–87.

    Article  CAS  Google Scholar 

  • Trkulja, N. R., Milosavljević, A. G., Mitrović, M. S., Jović, J. B., Toševski, I. T., Khan, M. F. R., & Secor, G. A. (2017). Molecular and experimental evidence of multi-resistance of Cercospora beticola field populations to MBC, DMI and QoI fungicides. European Journal of Plant Pathology, 149, 895–910.

    Article  CAS  Google Scholar 

  • Trueman, C. L., Hanson, L. E., Somohano, P., & Rosenzweig, N. (2017). First report of DMI-insensitive Cercospora beticola on sugar beet in Ontario, Canada. New Disease Reports, 36, 20.

    Article  Google Scholar 

  • Uchino, H., & Kanzawa, K. (1991). Application of a new fungicide “Difenoconazole” to control of Cercospora and Ramularia leaf spot of sugar beet in Hokkaido (in Japanese with English summary). Proc Japan Soc Sugar Beet Technol, 33, 88–96.

    CAS  Google Scholar 

  • Uchino, H., Kanzawa, K., & Yamakami, M. (1992). The occurrence of Cercospora leaf spot of sugar beet and climatic factors influencing its spread in Tokachi district (in Japanese with English summary). Proc Japan Soc Sugar Beet Technol, 34, 117–126.

    Google Scholar 

  • Uchino, H., & Watanabe, H. (1998). Controlling Cercospora leaf spot of sugar beet by applying tetraconazole (in Japanese with English summary). Proc Japan Soc Sugar Beet Technol, 40, 80–84.

    CAS  Google Scholar 

  • Uchino, H., Hikota, T., Watanabe, H., & Kanzawa, K. (1999). Sensitivity to difenoconazole and thiophanate-methyl of Cercospora beticola isolated from a sugar beet field after successive treatment by both chemicals (abstract in Japanese). Jpn J Phytopathol, 65, 403.

    Google Scholar 

Download references

Acknowledgments

We thank Ms. M. Nagahama, HRO Kamikawa Agricultural Experiment Station, Staffs of Nitten Sugar Beet Mfg. Co., Ltd., Hokkaido Sugar Co., Ltd., and Hokuren Federation of Agricultural Cooperatives; the staff of each agricultural extension center in Hokkaido for collecting leaves with CLS; Dr. T. Komatsu, Dr. M. S. Iketani, Mr. J. Sasaki, Mr. T. Kozawa and Mr. S. Yasuoka, Hokkaido Research Organization, for isolating Cercospora beticola; Ms. S. Yamashita, lab assistant of HRO Tokachi Agricultural Experiment Station, for help especially in determining EC50 values on media. Special thanks to Mr. M. Shimizu and Mr. S. Yasuoka, HRO Kitami Agricultural experiment Station, for helpful advice. We thank Dr. Y. Kawabata of TUAT for help in special arrangements for the one of the authors’ stay in Japan. We thank for the Special Research Fund of the Institute of Global Innovation Research at Tokyo University of Agriculture and Technology (GIR-TUAT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miyuki Kayamori or Ken Komatsu.

Ethics declarations

Ethical approval

This paper does not contain studies on human or animal participants.

Informed consent

The paper has not been submitted elsewhere for publication, in whole or in part.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Supplementary Information

ESM 1

(XLSX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayamori, M., Zakharycheva, A., Saito, H. et al. Resistance to demethylation inhibitors in Cercospora beticola, a pathogen of sugar beet in Japan, and development of unique cross-resistance patterns. Eur J Plant Pathol 160, 39–52 (2021). https://doi.org/10.1007/s10658-021-02219-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02219-6

Keywords

Navigation