The role of conidia in the dispersal of Ascochyta rabiei

Abstract

Ascochyta rabiei asexual spores (conidia) were assumed to spread over short distances (~10 m) in a combination of rain and strong wind. The potential distance of conidial spread was investigated in three rainfall and three sprinkler irrigation events. Chickpea trap plants were distributed at the distances of 0, 10, 25, 50 and 75 m from infected chickpea plots before scheduled irrigation and forecast rainfall events. Trap plants were transferred to a controlled temperature room (20 °C) for 48 h (100% humidity) after being exposed in the field for 2–6 days for rainfall events, and for 1 day for irrigation events. After a 48 h incubation period, trap plants were transferred to a glasshouse (20 °C) to allow lesion development. Lesions on all plant parts were counted after 2 weeks, which gave an estimate of the number of conidia released and the distance travelled. Trap plants at all distances were infected in all sprinkler irrigation and rainfall events. The highest number of lesions on trap plants were recorded closest to the infected plots –the numbers decreased as the distance from the infected plots increased. There was a significant (p < 0.05) relationship between the amount of rainfall and the number of lesions recorded. A generalised additive model was developed that efficiently described spatial patterns of conidial spread. With further development, the model can be used to predict the spread of A. rabiei. This is the first systematic study to show that conidia distribute A. rabiei over longer distances than previously reported.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and material

The raw data are documented and available from https://doi.org/10.5281/zenodo.3842293. All raw and generated data and further associated materials have been made further available as a part of a research compendium, available from https://doi.org/10.5281/zenodo.3810826.

References

  1. Agrios, G. (2005). Plant pathology. San Diego: Elsevier academic press.

    Google Scholar 

  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

    Article  Google Scholar 

  3. Armstrong-Cho, C., Gossen, B., & Chongo, G. (2004). Impact of continuous or interrupted leaf wetness on infection of chickpea by Ascochyta rabiei. Canadian Journal of Plant Pathology, 26(2), 134–141.

    Article  Google Scholar 

  4. Bates, D., Maechler, M., & Bolker, B. (2011). lme4: Linear Mixed-Effects Models using S4 classes. R package version, 999375–43;lme4 version 1.1-7, http://CRAN.R-project.org/package=lme4.

  5. Bretag, T., MacLeod, W., Kimber, R., Moore, K., Knights, E., & Davidson, J. (2008). Management of Ascochyta blight in chickpeas in Australia. Australasian Plant Pathology, 37(5), 486–497.

    CAS  Article  Google Scholar 

  6. Bruvo, R., Michiels, N. K., D’SOUZA, T. G., & Schulenburg, H. (2004). A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molecular Ecology, 13(7), 2101–2106.

    CAS  Article  Google Scholar 

  7. Core Team, R. (2019). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  8. Coventry, S. A. (2012). Factors affecting short and long distance dispersal of fungal pathogens: Chickpea Ascochyta blight as a model. PhD dissertation. The University of Adelaide, Australia.

  9. Diggle, A. J., Salam, M. U., Thomas, G. J., Yang, H., O'Connell, M., & Sweetingham, M. (2002). AnthracnoseTracer: A spatiotemporal model for simulating the spread of anthracnose in a lupin field. Phytopathology, 92(10), 1110–1121.

    CAS  Article  Google Scholar 

  10. Dunn, P. K. (2004). Occurrence and quantity of precipitation can be modelled simultaneously. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(10), 1231–1239.

    Article  Google Scholar 

  11. FAOSTAT. (2020). FAOSTAT database. Available at http://www.fao.org/faostat/en/-data/QC.

  12. Fasiolo, M., Nedellec, R., Goude, Y., & Wood, S. N. (2019). Scalable visualization methods for modern generalized additive models. Journal of Computational and Graphical Statistics, 29, 78–86. https://doi.org/10.1080/10618600.2019.1629942.

    Article  Google Scholar 

  13. Fitt, B. D., McCartney, H., & Walklate, P. (1989). The role of rain in dispersal of pathogen inoculum. Annual Review of Phytopathology, 27(1), 241–270.

    Article  Google Scholar 

  14. Galloway, J., & MacLeod, W. (2003). Didymella rabiei, the teleomorph of Ascochyta rabiei, found on chickpea stubble in Western Australia. Australasian Plant Pathology, 32(1), 127–128.

    Article  Google Scholar 

  15. Gideon, S. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.

    Article  Google Scholar 

  16. Griffiths, E., & Ao, H. C. (1976). Dispersal of Septoria nodorum spores and spread of glume blotch of wheat in the field. Transactions of the British Mycological Society, 67(3), 413–418.

    Article  Google Scholar 

  17. Grolemund, G., & Wickham, H. (2011). Dates and times made easy with lubridate. Journal of Statistical Software, 40(3), 1–25.

    Article  Google Scholar 

  18. Hasan, M. M., & Dunn, P. K. (2010). A simple Poisson–gamma model for modelling rainfall occurrence and amount simultaneously. Agricultural and Forest Meteorology, 150(10), 1319–1330.

    Article  Google Scholar 

  19. Hastie, T. J., & Tibsbirani, R. (1990). Generalized additive models. New York: Chapman and Hall.

    Google Scholar 

  20. Iannone, R. (2020). stationaRy: Detailed meteorological data from stations all over the world. R package version 0.5.1. https://CRAN.R-project.org/package=stationaRy.

  21. Jhorar, O., Butler, D., & Mathauda, S. (1998). Effects of leaf wetness duration, relative humidity, light and dark on infection and sporulation by Didymella rabiei on chickpea. Plant Pathology, 47(5), 586–594.

    Article  Google Scholar 

  22. Kaiser, W. (1973). Factors affecting growth, sporulation, pathogenicity, and survival of Ascochyta rabiei. Mycologia, 65(2), 444–457.

    CAS  Article  Google Scholar 

  23. Kaiser, W. (1992). Epidemiology of Ascochyta rabiei. In K. Singh & M. Saxena (Eds.), Disease resistance breeding in chickpea (pp. 117–134). Aleppo: ICARDA.

    Google Scholar 

  24. Kaiser, W., & Küsmenoglu, I. (1997). Distribution of mating types and the teleomorph of Ascochyta rabiei on chickpea in Turkey. Plant Disease, 81(11), 1284–1287.

    CAS  Article  Google Scholar 

  25. Khan, M. S. A. (1999). Epidemiology of Ascochyta blight of chickpea in Australia. PhD dissertation. The University of Adelaide.

  26. Kimber, R. (2002). Survival and transmission of Ascochyta rabiei (Ascochyta blight) of chickpea. Honours thesis, University of Adelaide, Australia.,

  27. Kimber, R., Shtienberg, D., Ramsey, M., & Scott, E. (2007). The role of seedling infection in epiphytotics of Ascochyta blight on chickpea. European Journal of Plant Pathology, 117(2), 141–152.

    Article  Google Scholar 

  28. Leo, A. E., Linde, C. C., & Ford, R. (2016). Defence gene expression profiling to Ascochyta rabiei aggressiveness in chickpea. Theoretical and Applied Genetics, 129(7), 1333–1345.

    CAS  Article  Google Scholar 

  29. Lomas, J. (1991). Sprinkler irrigation and plant disease under semi-arid climatic conditions 1. EPPO Bulletin, 21(3), 365–370.

    Article  Google Scholar 

  30. McCartney, A., & West, J. (2007). Dispersal of fungal spores through the air. In J. Dijksterhuis, & R. A. Samson (Eds.), Food Mycology - A Multifaceted Approach to Fungi and Food (pp. 79-96): CRC Press.

  31. Mehmood, Y., Sambasivam, P., Kaur, S., Davidson, J., Leo, A. E., Hobson, K., Linde, C. C., Moore, K., Brownlie, J., & Ford, R. (2017). Evidence and consequence of a highly adapted clonal haplotype within the Australian Ascochyta rabiei population. Frontiers in Plant Science, 8, 1029.

    Article  Google Scholar 

  32. Moore, K., Hobson, K., Sambasivam, P., Ford, R., Harden, S., Nash, P., et al. (2016). Chickpea ascochyta - is the pathogen changing and what are the implications for management. Available at https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2015/02/chickpea-ascochyta-is-the-pathogen-changing-and-what-are-the-implications-for-management.

  33. Navas-Cortés, J., Trapero-Casas, A., & Jiménez-Díaz, R. (1995). Survival of Didymella rabiei in chickpea straw debris in Spain. Plant Pathology, 44(2), 332–339.

    Article  Google Scholar 

  34. Navas-Cortés, J., Trapero-Casas, A., & Jiménez-Díaz, R. (1998). Influence of relative humidity and temperature on development of Didymella rabiei on chickpea debris. Plant Pathology, 47(1), 57–66.

    Article  Google Scholar 

  35. Nene, Y. (1982). A review of Ascochyta blight of chickpea. International Journal of Pest Management, 28(1), 61–70.

    Google Scholar 

  36. Nene, Y., & Reddy, M. (1987). Chickpea diseases and their control. In M. Saxena & R. Singh (Eds.), The chickpea (pp. 233–270). Wallingford: CAB International.

    Google Scholar 

  37. Pande, S., Siddique, K., Kishore, G., Bayaa, B., Gaur, P., Gowda, C., et al. (2005). Ascochyta blight of chickpea (Cicer arietinum L.): A review of biology, pathogenicity, and disease management. Australian Journal of Agricultural Research, 56(4), 317–332.

    Article  Google Scholar 

  38. Pedersen, E., Morrall, R., McCartney, H., & Fitt, B. D. (1994). Dispersal of conidia of Ascochyta fabae f. sp. lentis from infected lentil plants by simulated wind and rain. Plant Pathology, 43(1), 50–55.

    Article  Google Scholar 

  39. Rotem, J., & Palti, J. (1969). Irrigation and plant diseases. Annual Review of Phytopathology, 7(1), 267–288.

    CAS  Article  Google Scholar 

  40. Sache, I. (2000). Short-distance dispersal of wheat rust spores. EDP Sciences, 20, 757–767.

    Google Scholar 

  41. Salam, M. U., Galloway, J., Diggle, A. J., MacLeod, W. J., & Maling, T. (2011). Predicting regional-scale spread of ascospores of Didymella pinodes causing ascochyta blight disease on field pea. Australasian Plant Pathology, 40(6), 640–647.

    Article  Google Scholar 

  42. Seers, B. M., & Shears, N. T. (2015). New Zealand’s climate data in R—An introduction to clifro. The University of Auckland, New Zealand. URL: http://stattech.wordpress.fos.auckland.ac.nz/2015-02-new-zealands-climate-data-in-r-an-introduction-to-clifro/.

  43. Sparks, A. H., Esker, P., Bates, M., Dall'Acqua, W., Guo, Z., Segovia, V., et al. (2008). Ecology and epidemiology in R: Disease progress over time. The Plant Health Instructor. https://doi.org/10.1094/PHI-A-2008-0129-02.

  44. Sparks, A. H., Forbes, G. A., Hijmans, R., & Garrett, K. A. (2011). A metamodeling framework for extending the application domain of process-based ecological models. Ecosphere, 2(8), 1–14.

    Article  Google Scholar 

  45. Sparks, A. H., Padgham, M., Parsonage, H., & Pembleton, K. (2017). Bomrang: Fetch Australian government Bureau of Meteorology data in R. The Journal of Open Source Software, 2, 17.

    Google Scholar 

  46. Trapero-Casas, A., & Kaiser, W. (1992). Development of Didymella rabiei, the teleomorph of Ascochyta rabiei, on chickpea straw. Phytopathology, 82(11), 1261–1266.

    Article  Google Scholar 

  47. Trapero-Casas, A., Navas-Cortés, J., & Jimenez-Diaz, R. (1996). Airborne ascospores of Didymella rabiei as a major primary inoculum for Ascochyta blight epidemics in chickpea crops in southern Spain. European Journal of Plant Pathology, 102(3), 237–245.

    Article  Google Scholar 

  48. VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L., & Storlie, C. (2014). Species Distribution Modelling Tools, Tools for processing data associated with species distribution modelling exercises. CRAN. R-project.org/package=SDMTools.

  49. Vogelzang, B. (2012). Spore trapping coupled with quantitative PCR: Potential for application to biosecurity surveillance. PhD dissertation. The University of Adelaide, Australia.

  50. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., & Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686.

    Article  Google Scholar 

  51. Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B), 73(1), 3–36.

    Article  Google Scholar 

  52. Yang, X., Madden, L., Wilson, L., & Ellis, M. (1990). Effects of surface topography and rain intensity on splash dispersal of Colletotrichum acutatum. Phytopathology, 80(10), 1115–1120.

    Article  Google Scholar 

  53. Yee, T. W., & Mitchell, N. D. (1991). Generalized additive models in plant ecology. Journal of Vegetation Science, 2(5), 587–602.

    Article  Google Scholar 

Download references

Acknowledgements

Grains Research and Development Corporation (GRDC), Australia, provided financial assistance in this work through the project USQ-1903-003RTX. Agriculture Victoria and GRDC provided financial assistance in this work through their co-investment projects DAV00150 and DJP1097-001RTX.

We thankfully acknowledge Jason Brand and his team for trial sites management. We thank Andrew Hallet for technical support and assistance with field work. We also thank Art Diggle for detailed discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ihsanul Khaliq.

Ethics declarations

Conflict of interest

We confirm that we have no conflict to interest to disclose.

Ethical approval

This study did not involve working with animals or humans.

Consent to participate

Not applicable.

Consent for publication

Not applicable

Code availability

All code used in the analyses and data visualisation have been made available as a research compendium, available from https://doi.org/10.5281/zenodo.3810826.

Electronic supplementary material

ESM 1

(DOCX 5093 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khaliq, I., Fanning, J., Melloy, P. et al. The role of conidia in the dispersal of Ascochyta rabiei. Eur J Plant Pathol 158, 911–924 (2020). https://doi.org/10.1007/s10658-020-02126-2

Download citation

Keywords

  • Ascochyta blight
  • Epidemiology
  • Conidial spread
  • Wind-driven rain
  • Chickpea
  • Sprinkler irrigation