Skip to main content

Virulence variability of Ethiopian Zymoseptoria tritici isolates and efficacy of wheat genotypes and Stb resistance genes against the isolates

Abstract

Septoria tritici blotch caused by the fungus Zymoseptoria tritici is a serious threat to wheat production worldwide. Knowledge of physiologic specialization of the pathogen and identification of potential source of resistance are prerequisite for designing durable management strategies. The present study was targeted to determine the virulence pattern of eight bread wheat derived Ethiopian Z. tritici isolates, and efficacy of known Stb resistance genes and wheat genotypes against the isolates. Disease severity analysis confirmed the presence of specific interaction in the pathogen. Pathogenecity assay identified 60 isolate-specific resistances among all (n = 360) interactions. Of 45 wheat genotypes, 40% showed no isolate-specific resistance responses and were susceptible to all isolates. Tested Z. tritici isolates showed significantly different virulence patterns with virulence on 71% to 93% wheat genotypes. Isolate I1 was found to be the most virulent (on 93% of the tested genotypes), and hence, useful for germplasm screening. Among tested known Stb genes, Stb13/Stb14 in Salamouni did not confer resistance to any of the isolates, while Stb16 in KM7 conferred broad spectrum resistance to 75% of them, and thus, promising source of resistance to STB in Ethiopia. Among tested 20 commercial cultivars, 45% did not confer resistance to all the isolates. Three genotypes (MURGA, Km7 and the cultivar Hidase) conferred the greatest level of resistance to the tested Ethiopian Zymoseptoria tritici isolates. The information is very useful for wheat breeders and the wheat farming community in making informed decisions to manage STB disease in Ethiopia.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

ANOVA:

Analysis of variance

CIMMYT:

International Maize and Wheat Improvement Center

DS:

Disease severity

FYM:

Farm yard manure

HARC:

Holeta Agricultural Research Center

LMM:

Linear mixed model

LSD:

Least significant differences

NLA:

Necrosis leaf area

PC:

Pychnidia coverage

PDA:

Potato dextrose agar

SE :

Standard error

SR:

Septoria resistance

STB:

Septoria tritici blotch

Stb genes :

Septoria resistant genes

References

  1. Abebe, T., Mehari, M., & Legesse, M. (2015). Field response of wheat genotypes to Septoria Tritici blotch in Tigray, Ethiopia. Journal of Natural Science Research, 5(1), 146–152.

    Google Scholar 

  2. Abrinbana, M., Mozafari, J., Shams-bakhsh, M., & Mehrabi, R. (2012). Resistance spectra of wheat genotypes and virulence patterns of Mycosphaerella graminicola isolates in Iran. Euphytica, 186, 75–90.

    Google Scholar 

  3. Ackermann, M. D., Stewart, S., & Ibanez, W. (1995). Pathogenic variability of Septoria tritici isolates from South America In: The Septoria tritici: Proceedings of the workshop Gilchrist, S. L., van Ginkel, M., McNab, A., & Kema, G. H. J. (Eds) CIMMYT, Mexico, DF, pp 41-51.

  4. Adhikari, T. B., Cavaletto, J. R., Dubcovsky, J., Gieco, J., Schlatter, A. R., & Goodwin, S. B. (2004a). Molecular mapping of the Stb4 gene for resistance to septoria tritici blotch in wheat. Phytopathology, 94, 1198–1206.

    CAS  PubMed  Google Scholar 

  5. Adhikari, T. B., Wallwork, H., & Goodwin, S. B. (2004b). Microsatellite markers linked to the Stb2 and Stb3 genes for resistance to Septoria tritici blotch in wheat. Crop Science, 44, 1403–1411.

    CAS  Google Scholar 

  6. Admassu, B., Friedt, W., & Ordon, F. (2012). Stem rust seedling resistance genes in Ethiopian wheat cultivars and breeding lines. African Crop Science Journal, 20, 149–161.

    Google Scholar 

  7. Ayele, B., Eshetu, B., Betelehem, B., Bekele, H., Melaku, D., Asnakech, T., Melkamu, A., Amare, A., Kiros, M., & Fekede, A. (2008). Review of two decades of research on diseases of small cereal crops In: Abrham, Tadesse (Ed), Increasing Crop Production through Improved Plant Protection, Proceedings of 14th annual conference of plant protection society of Ethiopia 19–22 Dec 2006 Addis Ababa, Ethiopia, vol I, pp 375–416.

  8. Ballantyne, B. J. (1989). Pathogenic variation in Australian cultures of Mycosphaerella graminicola In: Septoria diseases of cereals: Proceeding of the 3rd International Workshop P M Fried ed Zurich, Switzerl, pp 54.

  9. Bekele, E. (1985). A review of research on diseases of barley, tef and wheat in Ethiopia In: Abate, T. (Ed) A Review of Crop Protection Research in Ethiopia Proceedings of the First Ethiopian Crop Protection Symposium 4-7 February, 1985 Addis Ababa, Ethiopia: IAR, pp. 79–108.

  10. Boughalleba, N., & Harrabi, M. (1997). Physiological specialization of Septoria tritici in northern-Africa. Tropicultura, 15, 33–36.

    Google Scholar 

  11. Brading, P. A., Verstappen, E. C. P., Kema, G. H. J., & Brown, J. K. M. (2002). A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology, 92, 439–445.

    PubMed  Google Scholar 

  12. Brown, J. K. M., Chartrain, L., Lasserre-Zuber, P., & Saintenac, C. (2015). Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genetics and Biology, 79, 33–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chartrain, L., Brading, P. A., & Brown, J. K. M. (2005a). Presence of the Stb6 gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide. Plant Pathology, 54, 134–143.

    CAS  Google Scholar 

  14. Chartrain, L., Berry, S. T., & Brown, J. K. M. (2005b). Resistance of wheat line Kavkaz-K4500 L6A4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathology, 95, 664–671.

    CAS  PubMed  Google Scholar 

  15. Cherif, M., Rezgui, S., Devaux, P., & Harrabi, M. (2007). Interaction between Rhynchosporium secalis and Pyrenophora teres in the field and identification of genotypes with double resistance in a doubled-haploid barley population. Journal of Phytopathology, 155, 90–96.

    Google Scholar 

  16. Czembor, P., Janusik, M. R., & Kowski, D. M. (2011). Virulence spectrum of Mycosphaerella graminicola isolates on wheat genotypes carrying known resistance genes to Septoria tritici blotch. Journal of Phytopathology, 159, 146–154.

    Google Scholar 

  17. Dalvand, M., Zafar, D., Pari, S. M. J., Roohparvar, R., & Ghafari, S. M. T. (2018). Studying genetic diversity in Zymoseptoria tritici, causal agent of Septoria Tritici blotch, by using ISSR and SSR markers. Journal of Agricultural Science and Technology, 20(6), 1307–1316.

    Google Scholar 

  18. Eyal, Z. (1999). The septoria tritici and stagonospora nodorum blotch diseases of wheat. European Journal of Plant Pathology, 105, 629–641.

    Google Scholar 

  19. Eyal, Z., & Levy, E. (1987). Variations in pathogenicity patterns of Mycosphaerella graminicola within Triticum spp in Israel. Euphytica, 36, 237–250.

    Google Scholar 

  20. Eyal, Z., & Ziv, O. (1974). The relationship between epidemics of septoria leaf blotch and yield losses in spring wheat. Phytopathology, 64, 1385–1389.

    Google Scholar 

  21. Eyal, Z., Amiri, Z., & Wahl, I. (1973). Physiological specialization of Septoria tritici. Phytopathology, 63, 1087–1091.

    Google Scholar 

  22. Eyal, Z., Scharen, A. L., & Prescott, M. J. (1983). Global “finger- printing” of Leptosphaeria nodorum (Septoria nodorum) and Mycosphaerella graminicola (Septoria tritici) pathogenicity patterns In: Proc 1983 Workshop, Montana State Univ, Bozeman, Montana, US Dept Agric, Agric Res Serv ARS-12, April 1985, pp74–75.

  23. Eyal, Z., Scharen, A. L., Prescott, J. M., & van Ginkel, M. (1987). The Septoria Diseases of Wheat. Mexico: Concepts and Methods of Disease Management, CIMMYT.

    Google Scholar 

  24. FAOSTAT (2019). http://www.fao.org/faostat/en/#data/QC. Accessed 22 Oct 2019.

  25. Getinet, G., van Ginkel, M., Temesgen, K., Mintwab, H., Rebeka, D., Bainbridge, A., Mengistu, H., Yeshi, A., Derege, T., Amanuel, G., & Ayele, B. (1990). Wheat disease survey in Ethiopia in 1988 In: Tanner, DG, van Ginkel M, & Mwangi WM, (Eds.), Sixth Regional Wheat Workshop for Eastern, Central and Southern Africa CIMMYT, Mexico, DF, pp 153-165.

  26. Ghaneie, A., Mehrabi, R., Safaie, N., Abrinbana, M., Saidi, A., & Aghaee, M. (2011). Genetic variation for resistance to septoria tritici blotch in Iranian tetraploid wheat landraces. European Journal of Plant Pathology. https://doi.org/10.1007/s10658-011-9862-7.

  27. Gieco, J. O., Dubcovsky, J., & Camargo, L. E. A. (2004). Aggressiveness and physiological specialization of Septoria tritici Rob Isolates. Sci Agric (Piracicaba, Braz), 61(4), 414–421.

    Google Scholar 

  28. Grieger, A. P. (2001). Host-pathogen interactions in the wheat-Mycosphaerella graminicola pathosystem MSc thesis University of Manitoba, Winnipeg, Manitoba.

  29. Hailu, E., & Woldeab, G. (2015). Survey of rust and Septoria leaf blotch diseases of wheat in Central Ethiopia and virulence diversity of stem rust Puccinia graminis f sp tritici. Advance in Crop Science and Technology, 166, 2329–8863.

    Google Scholar 

  30. Hansona, P., Lua, S. F., Wanga, J. F., Chena, W., Kenyona, L., et al. (2016). Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Scientia Horticulturae, 201, 346–354.

    Google Scholar 

  31. Hosseinnezhad, A., Khodarahmi, M., Rezaee, S., Mehrabi, R., & Roohparvar, R. (2014). Effectiveness determination of wheat genotypes and Stb resistance genes against Iranian Mycosphaerella graminicola isolates. Archives of Phytopathology and Plant Protection, 47(17), 2051–2069.

    CAS  Google Scholar 

  32. JIibene, M., Mazouz, H., Farih, A., & Saadaoui, E. M. (1995). Host-pathogen interaction of wheat (Triticum aestivum) and Septoria tritici in Morocco In: The Septoria tritici: Proceedings of the Workshop Gilchrist, S. L, van Ginkel, M., McNab, & A., Kema, G. H. J. (Eds) CllvHv1YT, Mexico, DF, pp 34–40.

  33. Kema, G. H. J., & van Silfhout, C. H. (1997). Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem: III comparative seedling and adult plant experiments. Phytopathology, 87, 266–272.

    CAS  PubMed  Google Scholar 

  34. Kema, G. H. J., van Silfhout, C. H., Sayoud, R. J. G., van Ginkel, M., & de Bree, J. (1995). Genetic variation for virulence in Septoria tritici In: The Septoria tritici: Proceedings ofthe Workshop Gilchrist SL, van Ginkel M, McNab A, & Kema, G. H. J. (Eds) CIMMYT, Mexico, DF, pp 52-54.

  35. Kema, G. H. J., Sayoud, R. J. G., van Silfhout, C. H., van Ginkel, M., & de Bree, J. (1996a). Genetic variation for virulence and resistance in the wheat Mycosphaerella graminicola pathosystem I interactions between pathogen isolates and host cultivars. Phytopathology, 86, 200–212.

    Google Scholar 

  36. Kema, G. H. J., Sayoud, R. J. G., & van Silfhout, C. H. (1996b). Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem II analysis of interactions between pathogen isolates and host cultivars. Phytopathology, 86, 213–220.

    Google Scholar 

  37. Kettles, G. J., & Kanyuka, K. (2016). Dissecting the molecular interactions between wheat and the fungal pathogen Zymoseptoria tritici. Frontiers in Plant Science, 7, 508. https://doi.org/10.3389/fpls.2016.00508.

    Article  PubMed  PubMed Central  Google Scholar 

  38. King, J. E., Cook, R. J., & Melville, S. C. (1983). A review of Septoria diseases of wheat and barley. Annals of Applied Biology, 103, 345–373.

    Google Scholar 

  39. Makhdoomi, A., Mehrabi, R., Khodarahmi, M., & Abrinbana, M. (2015). Efficacy of wheat genotypes and Stb resistance genes against Iranian isolates of Zymoseptoria tritici. Journal of General Plant Pathology, 81, 5–14. https://doi.org/10.1007/s10327-014-0565-8.

    CAS  Article  Google Scholar 

  40. McCartney, C. A., Brule-Babel, A. L., Lamari, L., & Somers, D. J. (2003). Chromosomal location of a race-specific resistance gene to Mycosphaerella graminicola in the spring wheat ST6. Theoretical and Applied Genetics, 107, 1181–1186.

    CAS  PubMed  Google Scholar 

  41. McIntosh, R. A., Devos, K. M., & Dubcovsky, J. V. (2007). Catalogue of gene symbols for wheat supplement retrieved from http://wheatpwusdagov/ggpages/wgc/upd html. Accessed 19 Oct 2019.

  42. Mekonnen, T., Haileselassie, T., Kaul, T., Sharma, M., Geleta, A., & Tesfaye, K. (2019). Molecular screening of Zymoseptoria tritici resistance genes in wheat (Triticum aestivum L) using tightly linked simple sequence repeat markers. European Journal of Plant Pathology, 155, 593–614. https://doi.org/10.1007/s10658-019-01795-y.

    CAS  Article  Google Scholar 

  43. Mengistu, H., Getaneh, W., Yeshi, A., Rbka, D., & Ayele, B. (1991). Wheat pathology research in Ethiopia In: Hailu, G., Tanner, D. G., & Mengistu, H. (Eds), Wheat Research in Ethiopia: a Historical Perspective IAR/CIMMYT, Addis Ababa, pp 173-217.

  44. Miedaner, T., Zhao, Y., Gowda, M., Longin, C. F. H., Korzun, V., Ebmeyer, E., Kazman, E., & Reif, J. C. (2013). Genetic architecture of resistance to Septoria tritici blotch in European wheat. BMC Genomics, 14, 858. https://doi.org/10.1186/1471-2164-14-858.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Muqaddasi, Q. H., Zhao, Y., Rodemann, B., Plieske, J., Ganal, M. W., & Roder, M. S. (2019). Genome-wide association mapping and prediction of adult stage Septoria tritici blotch infection in European winter wheat via high-density marker arrays. Plant Genome, 12, 180029–180013. https://doi.org/10.3835/plantgenome2018.05.0029.

    Article  Google Scholar 

  46. Perello, A. E., Cordo, C. A., Arriaga, H. O., & Alippi, H. E. (1991). Variation in virulence of Septoria tritici rob ex Desm isolates on wheat. Agronomie, 11, 571–579.

    Google Scholar 

  47. Ponomarenko, A., Goodwin, S. B., & Kema, G. H. J. (2011). Septoria tritici blotch (STB) of wheat. Plant Health Instructor. https://doi.org/10.1094/PHI-I-2011-0407-01.

  48. Quaedvlieg, W., Kema, G. H. J., Groenewald, J. Z., Verkley, G. J. M., Seifbarghi, S., Razavi, M., Gohari, A. M., Mehrabi, R., & Crous, P. W. (2011). Zymoseptoria gen nov: A new genus to accommodate septoria-like species occurring on graminicolous hosts. Persoonia, 26, 57–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ragimekula, N., Varadarajula, N. N., Mallapuram, S. P., Gangimeni, G., & Reddy, R. K. (2013). Marker assisted selection in disease resistance breeding. Journal of Plant Breeding and Genetics, 1, 90–109.

    Google Scholar 

  50. Saadaoui, E. M. (1987). Physiologic specialization of Septoria tritici in Morocco. Plant Disease, 71, 153–155.

    Google Scholar 

  51. SAS Institute Inc. (2008). SAS/STAT ® 9.2 User’s guide. Cary: SAS Institute Inc..

    Google Scholar 

  52. Sebei, A., & Harrabi, M. (2008). Assessment of virulence variability in Septoria tritici isolates and resistance of selected durum wheat cultivars. Tunisian Journal of Plant Protection, 3, 11–17.

    Google Scholar 

  53. Shipton, W. A., Boyd, W. R., Rosielle, A. A., & Shearer, B. I. (1971). The common Septoria diseases of wheat. The Botanical Review, 37(2), 231–262.

    Google Scholar 

  54. Sidhu, G. S., & Webster, J. M. (1981). The genetics of plant-nematode parasitic systems. The Botanical Review, 47(3), 387–419.

    Google Scholar 

  55. Sokal, R. R., & Rohlf, J. F. (1995). Biometry (3rd ed.). New York: Freeman.

    Google Scholar 

  56. Somasco, O. A., Qualset, C. O., & Gilchrist, D. G. (1996). Single-gene resistance to Septoria tritici blotch in the spring wheat cultivar “Tadinia”. Plant Breeding, 115, 261–267.

    Google Scholar 

  57. Stewart, R. B., & Dagnatchew, Y. (1967). Index of plant diseases in Ethiopia Experimental Station Bull No 30 Ethiopia College ofAgriculture, Haile Selassie University Statistical Bulletin 388Addis Ababa, Ethiopia.

  58. Tabib Ghaffari, S., Robert, O., Laurent, V., Lonnet, P., Margale, E., van der Lee, T. A. J., Visser, R. G. F., & Kema, G. H. J. (2011). Genetic analysis of resistance to Septoria tritici blotch in the French winter wheat cultivars balance and apache. Theoretical and Applied Genetics, 123, 741–754.

    Google Scholar 

  59. Tabib Ghaffari, S. M., Faris, J. D., Friesen, T. L., Visser, R. G. F., van der Lee, T. A. J., Robert, O., & Kema, G. H. J. (2012). New broad-spectrum resistance to Septoria tritici blotch derived from synthetic hexaploid wheat. Theoretical and Applied Genetics, 124, 125–142.

    Google Scholar 

  60. Takele, A., Lencho, A., Getaneh, W., Hailu, E., & Kassa, B. (2015). Status of wheat Septoria leaf blotch (Septaria tritici Roberge in Desmaz) in south west and Western Shewa zones of Oromiya regional state, Ethiopia. Research in Plant Sciences, 3(3), 43–48.

    Google Scholar 

  61. Teferi, T. A., & Gebreslassie, Z. S. (2015). Occurrence and intensity of wheat Septoria tritici blotch and host response in Tigray, Ethiopia. Crop Protection, 68, 67–71.

    Google Scholar 

  62. Testa, A., Oliver, R., & Hane, J. (2015). Overview of genomic and bioinformatic resources for Zymoseptoria tritici. Fungal Genetics and Biology, 79, 13–16.

    CAS  PubMed  Google Scholar 

  63. Van der Plank, J. E. (1968). Disease Resistance in Plants Academic Press, NY, pp. 206.

  64. Wilson, J. P., Hess, D. E., Hanna, W. W., Kumar, K. A., & Gupta, S. C. (2004). Pennisetum glaucum subsp monodii accessions with Striga resistance in West Africa. Crop Protection, 23, 865–870.

    Google Scholar 

Download references

Acknowledgments

This work is part of the first author’s PhD thesis. The authors would like to thank the Institute of Biotechnology, Addis Ababa University for material and technical supports for this research. We are also very grateful to the Ministry of Innovation and Technology of the Federal Democratic Republic of Ethiopia for funding the research, the International Maize and Wheat Improvement Center (CIMMYT) and the wheat breeding program of Holeta Agricultural Research Center, for providing the study wheat genotypes, and the National Agricultural Biotechnology laboratory centre for providing laboratory space and greenhouse facilities to conduct this research.

Funding

The work was supported by Ministry of Innovation and Technology of the Federal Democratic Republic of Ethiopia.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Sample collection, data collection and analysis were performed by Tilahun Mekonnen. All co-authors actively involved in interpreting the data, drafting and revising the previous version of the manuscript, and finally approving the manuscript.

Corresponding author

Correspondence to Tilahun Mekonnen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The conducted research does not involve human participants or animals.

Ethical responsibility

The data used in this manuscript are our original work and have not been published elsewhere in any form (partially or in full). Work and words used from other sources have been properly acknowledged.

Author agreement/ declarations

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mekonnen, T., Haileselassie, T., Abayo, B.G. et al. Virulence variability of Ethiopian Zymoseptoria tritici isolates and efficacy of wheat genotypes and Stb resistance genes against the isolates. Eur J Plant Pathol 158, 895–910 (2020). https://doi.org/10.1007/s10658-020-02125-3

Download citation

Keywords

  • Disease severity
  • Isolate-specific resistance
  • Pathogenecity assay
  • Pathotpye
  • Specific interaction