Skip to main content
Log in

Characterization of Dickeya fangzhongdai causing bacterial soft rot disease on Dendrobium nobile in India

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Soft-rot disease on Dendrobium nobile observed in a commercial farm in the Nilgiris district of Tamil Nadu, India was investigated. Disease etiology is reported along with phenotypic, molecular identification of the pathogen. Infected leaves showed rot symptoms characterized by irregular water-soaked lesions on the leaf margin that rapidly spread over the entire leaf. Milky exudation on the cut end of infected leaves indicated the bacterial etiology of the disease. The bacterial colonies isolated were irregular, whitish-yellow, spindle-shaped with a characteristic raised center. All isolates showed identical phenotypic traits and induced a hypersensitive reaction on Nicotiana tabacum leaves. Pathogenicity assay performed on D. nobile confirmed their pathogenic nature as all three bacterial isolates incited typical soft-rot within 12 h post-inoculation (hpi). In vitro host range studies revealed that all the isolates could cause rot on cut slices of other vegetable crops including potato, carrot, and onion. Additionally, the bacterium incited soft rot on Aloe vera, but not on chrysanthemum and banana transplants. The identity of the bacterial isolates was confirmed as Dickeya fangzhongdai using 16S rRNA gene sequences as well as by their pathogenic behavior. Complete understanding of the etiology of the disease and of the pathogen would be useful to devise suitable management practices for the containment of disease spread in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Alic, S., Naglic, T., Tusek-Znidaric, M., Peterka, M., Ravnikar, M., & Dreo, T. (2017). Putative new species of the genus Dickeya as major soft rot pathogens in Phalaenopsis orchid production. Plant Pathology, 66(8), 1357–1368.

    Article  CAS  Google Scholar 

  • Alic, S., Frederique, V. G., Jacques, P., Maja, R., & Tanja, D. (2018). Diversity within the novel Dickeya fangzhongdai sp., isolated from infected orchids, water and pears. Plant Pathology, 67(7), 1612–1620.

    Article  CAS  Google Scholar 

  • Altschul, S., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.

    Article  CAS  Google Scholar 

  • Cating, R. A., & Palmateer, A. J. (2011). Bacterial soft rot of Oncidium orchids caused by a Dickeya sp. (Pectobacterium chrysanthemi) in Florida. Plant Disease, 95, 74–74.

    Article  CAS  Google Scholar 

  • Cating, R. A., Hong, J. C., Palmateer, A. J., Stiles, C. M., & Dickstein, E. R. (2008). First report of bacterial soft rot on Vanda orchids caused by Dickeya chrysanthemi (Erwinia chrysanthemi) in the United States. Plant Disease, 92(6), 977–977.

    Article  CAS  Google Scholar 

  • Charkowski, A. O. (2018). The changing face of bacterial soft-rot diseases. Annual Review of Phytopathology, 56, 13.1–13.20.

    Article  Google Scholar 

  • Chen, W. P., & Kuo, T. T. (1993). A simple and rapid method for preparation of gram negative bacterial genomic DNA. Nucleic Acids Research, 21(9), 2260.

    Article  CAS  Google Scholar 

  • Czajkowski, R., Grabe, G. J., & van der Wolf, J. M. (2009). Distribution of Dickeya spp. and Pectobacterium carotovorum subsp. carotovorum in naturally infected seed potatoes. European Journal of Plant Pathology, 125, 263–275.

  • De Boer, S. H. (2002). Relative incidence of Erwinia carotovora subsp. atroseptica in stolen end and peridermal tissue of potato tubers in Canada. Plant Disease, 86, 960–964.

    Article  Google Scholar 

  • De, L., Pathak, P., Rao, A. N., & Rajeevan, P. K. (2014). In: Book: Commercial orchids. De Gruyter open access, pp. 300. https://doi.org/10.2478/9783110426403.

  • Duprey, A., Taib, N., Leonard, S., Garin, T., Flandrois, J. P., Nasser, W., & Reverchon, S. (2019). The phytopathogenic nature of Dickeya aquatica 174/2 and the dynamic early evolution of Dickeya pathogenicity. Environmental Microbiology, 21(8), 2809–2835.

    Article  CAS  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783–791.

    Article  Google Scholar 

  • Garlant, L. (2015). Ecology and genomics of Dickeya solani, a new soft rot bacterium infecting potatoes. p (9): http://ethesis.helsinki.fi

  • Hasegawa, M., Kishino, H., & Yano, T. A. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160–174.

    Article  CAS  Google Scholar 

  • Hugouvieux-Cotte-Pattat, N., Jacot-des-Combes, C., & Briolay, J. (2019). Dickeya lacustris sp. nov, a water-living pectinolytic bacterium isolated from lakes in France. International Journal of Systematic and Evolutionary Microbiology, 69, 721–726.

    Article  CAS  Google Scholar 

  • Janse, J. D. (2005). Phytobacteriology: Principles and practice (pp. 1–366). Wallingford: CABI Publishing.

    Book  Google Scholar 

  • Joko, T., Subandi, A., Kusumandari, N., Wibowo, A., & Priyatmojo, A. (2014). Activities of plant cell wall-degrading enzymes by bacterial soft rot of orchid. Archives of Phytopathology and Plant Protection, 47, 1239–1250.

    Article  CAS  Google Scholar 

  • Keith, L. M., Sewake, K. T., & Zee, F. T. (2005). Isolation and characterization of Burkholderia gladioli from orchids in Hawaii. Plant Disease, 89, 1273–1278.

    Article  CAS  Google Scholar 

  • Klement, Z. (1963). Rapid detection of the pathogenicity of phytopathogenic Pseudomonads. Nature, 199, 299–300.

    Article  CAS  Google Scholar 

  • Kuehnle, A. R. (2007). In N. O. Anderson (Ed.), Flower breeding and genetics (pp. 539–560). Springer. https://doi.org/10.1007/978-1-4020-4428-1_20.

  • Kumar, A. (2006). Methods for screening ginger (Zingiber officinale Rosc.) for bacterial wilt resistance. Indian Phytopathology, 59, 281–286.

    Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.

    Article  CAS  Google Scholar 

  • Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G., & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 1364–3703.

  • Moon, H., Park, H. J., Jeong, A., Han, S. W., & Park, C. J. (2017). Isolation and identification of Burkholderia gladioli on Cymbidium orchids in Korea. Biotechnology and Biotechnological Equipment, 31(2), 280–288.

    Article  Google Scholar 

  • OEPP/EPPO. (1988). A1 and A2 lists of quarantine pests. Specific quarantine requirements. EPPO Publications Series B. No. 92.

  • Oulghazi, S., Pedron, J., Cigna, J., Lau, Y. Y., Moumni, M., Van Gijsegem, F., & Faure, D. (2019). Dickeya undicola sp. nov., a novel species for pectinolytic isolates from surface waters in Europe and Asia. International Journal of Systematic and Evolutionary Microbiology, 69(8), 2440–2444.

    Article  CAS  Google Scholar 

  • Parkinson, N., DeVos, P., Pirhonen, M., & Elphinstone, J. (2014). Dickeya aquatica sp. nov., isolated from waterways. International Journal of Systematic and Evolutionary Microbiology, 64, 2264–2266.

    Article  CAS  Google Scholar 

  • Potrykus, M., Decorosi, F., Perkowska, I., Viti, C., Mengoni, A., Pattat, N. H. C., & Lojkowska, E. (2020). The metabolic shift in highly and weakly virulent Dickeya solani strains is more affected by temperature than by mutations in genes encoding global virulence regulators. Microbiology Ecology, 96(3). https://doi.org/10.1093/femsec/fiaa023.

  • Poussier, S., Trigalet-Demery, D., Vandewalle, P., Goffinet, B., Luisetti, J., & Trigalet, A. (2000). Genetic diversity of Ralstonia solanacearum as assessed by PCR-RFLP of the hrp gene region, AFLP and 16S rRNA sequence analysis and identification of an African subdivision. Microbiology, 146, 1679–1692.

    Article  CAS  Google Scholar 

  • Samson, R., Legendre, J. B., Christen, R., Fischer-Le Saux, M., Achouak, W., & Gardan, L. (2005). Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. International Journal of Systematic and Evolutionary Microbiology, 55, 1415–1427.

    Article  CAS  Google Scholar 

  • Schaad, N. W., Jones, J. B., & Chun, W. (2011). Laboratory guide for identification of plant pathogenic bacteria (3rd ed.). Beijing: China agricultural science and technology press.

    Google Scholar 

  • Shen, Y., Lv, W. G., Du, Y. H., Zhang, Y. X., & Li, H. P. (2019). First report of Dickeya fangzhongdai causing soft rot of Phalaenopsis aphrodite in China. Plant Disease, 103(10), 2665–2665.

    Article  Google Scholar 

  • Taghavi, M., Hayward, C., Sly, L. I., & Fegan, M. (1996). Analysis of the phylogenetic relationships of strains of Burkholderia solanacearum, Pseudomonas syzygii and the blood disease bacterium of banana based on 16S rRNA gene sequences. International Journal of Systematic Bacteriology, 46, 10–15.

    Article  CAS  Google Scholar 

  • Tian, Y., Zhao, Y., Yuan, X., Yi, J., Fan, J., Xu, Z., Hu, B., De Boer, S. H., & Li, X. (2016). Dickeya fangzhongdai sp. nov., a plant-pathogenic bacterium isolated from pear trees (Pyrus pyrifolia). International Journal of Systematic and Evolutionary Microbiology, 66, 2831–2835.

    Article  CAS  Google Scholar 

  • Toth, I. K., Van Der Wolf, J. M., Saddler, G., Lojkowska, E., Hélias, V., Pirhonen, M., & Elphinstone, J. G. (2011). Dickeya species: An emerging problem for potato production in Europe. Plant Pathology, 60(3), 385–399.

    Article  Google Scholar 

  • Van der Wolf, J. M., Nijhuis, E. H., Kowalewska, M. J., Saddler, G. S., Parkinson, N., Elphinstone, J. G., Pritchard, L., Toth, I. K., Lojkowska, E., Potrykus, M., Waleron, M., de Vos, P., Cleenwerck, I., Pirhonen, M., Garlant, L., Helias, V., Pothier, J. F., Pfluger, V., Duffy, B., Tsror, L., & Manulis, S. (2014). Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). International Journal of Systematic and Evolutionary Microbiology, 64, 768–774.

    Article  Google Scholar 

  • Yuan, Y., Yu, M., Zhang, B., Liu, X., & Zhang, J. (2019). Comparative nutritional characteristics of the three major Chinese Dendrobium species with different growth years. PLoS One, 14(9).

  • Zhitao, N., Shuying, Z., Jiajia, P., Ludan, L., Jing, S., & Xiaoyu, D. (2017). Comparative analysis of Dendrobium plastomes and utility of plastomic mutational hotspots. Scientific Reports, 7(1), 1–11.

    Article  Google Scholar 

  • Zhou, J. N., Lin, B. R., Shen, H. F., Pu, X. M., Chen, Z. N., & Feng, J. J. (2012). First report of a soft rot of Phalaenopsis aphrodita caused by Dickeya dieffenbachiae in China. Plant Disease, 96, 760–760.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director, ICAR-IARI for providing necessary facilities to complete this work successfully. Biolog facility provided by the NAHEP-CAAST project, ICAR-IARI, New Delhi is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

Our manuscript entitled “Characterization of Dickeya fangzhongdai causing bacterial soft rot disease on Dendrobium nobile in India” comply with the Ethical Rules applicable for European Journal of Plant Pathology.

Electronic supplementary material

Supplementary Fig 1

Hypersensitive reaction on N. tabacum leaf. Tobacco leaf showing brown, necrotic hypersensitive response at 60 h post inoculation induced by the Dickeya fangzhongdai (108 cfu/ml) Supplementary Fig. 1 represents the results of all three D. fangzhongdai isolates (JPG 2765 kb)

Supplementary Fig 2

PCR confirmation of Dickeya fangzhongdai isolates through 16S rRNA sequence analysis. M 1 kb ladder (DNA size marker), 1 DDf_Kot1; 2 DDf_Kot2 and 3 DDf_Kot5, Note: Amplicon at 1500 bp specific to 16S rRNA gene (PNG 74 kb)

Supplementary Fig 3

Biolog based phenotypic finger printing assay matched with Dickeya dianthicola (isolate Kot1) with 0.56 similarity index and 0.897% probability recorded on 24 h post inoculation at 32 °C (PNG 195 kb)

Supplementary Fig 4a

Tissue maceration by Dickeya fangzhongdai on potato cut slice. (a) Potato cut slice with 0 h post inoculation (hpi) of the bacterium, (b) Rotting symptoms with definite spreading layer on 12 hpi, (c) Rotting sign continued to form second layer on 24 hpi, (d) Third layer of rotting on 36 hpi, (e) Fourth layer of rotting on 48 hpi, (f) Complete rotting of potato slice with disintegrated tissues due to maceration of the bacterium on 60 hpi, hpi: hours post inoculation, Supplementary Fig. 4a represents the results of all three D. fangzhongdai isolates (PNG 566 kb)

Supplementary Fig 4b

Tissue maceration by Dickeya fangzhongdai on carrot cut slice. (a) Un-inoculated cut slice of carrot, (b) Drop inoculation of the bacterium, 20 μl at 0 hpi (black arrow), (c) Rotting symptoms initiated within 12 hpi, (d) Rotting advanced upto periphery of the slice on 24 hpi, (e) Tissue maceration of the bacterium on 36 hpi, (f) Cut slice get disintegrated with spongy appearance on 60 hpi, hpi: hours post inoculation, Supplementary Fig. 4b represents the results of all three D. fangzhongdai isolates (PNG 444 kb)

Supplementary Fig 4c

Tissue maceration by Dickeya fangzhongdai on onion cut slice. (a) Drop inoculation of the bacterium, 20 μl on cut slice of onion at 0 hpi (red arrow), (b)Yellowish brown rotten symptom at 24 hpi, (c) Tissue maceration at 36 hpi, (d) Complete disintegration of cut slice with gummy appearance on 48 hpi, hpi: hours post inoculation, Supplementary Fig. 4c represents the results of all three D. fangzhongdai isolates (PNG 413 kb)

Supplementary Fig 5

Tissue maceration by Dickeya fangzhongdai on Aloe vera plants. (a) Syringe inoculation of the bacterium, 20 μl onto healthy Aloe vera leaf at 0 hpi (red arrow), (b) Water soaked, dark-green color lesion on 24 hpi, (c) Lesion advanced on 32 hpi, (d) Typical soft-rot symptoms on 48 hpi, (e) Intercellular spread of the bacterium led to tissue maceration and disintegration was recorded 60 hpi, (f) Systemic infection of Aloe vera leaves upon inoculation of D. fangzhongdai isolate recorded on 96 h post inoculation, hpi: hours post inoculation, Supplementary Fig. 5 represents the results of all three D. fangzhongdai isolates (PNG 641 kb)

Supplementary Fig. 6

Pathogenic assay of Dickeya fangzhongdai on chrysanthemum (Chrysanthemum indicum L. cv. locally grown yellow flower type) and banana (Musa x paradisiaca L. cv. grand nain) transplants. (a) Inoculation made through injection on chrysanthemum stem and (c) banana pseudostem using syringe - loaded with test bacterium (yellow arrows), The transplants did not infected by the bacterium indicated the non-pathogenic nature to three unique D. fangzhongdai isolates was recorded in chrysanthemum (b) and banana (d) and appeared as healthy, The R1, R2 and R3 represent replicated results for each inoculated plants, Control plants inoculated with sterile water remains healthy, Image was taken 30 days after inoculation of the bacterium (PNG 1496 kb)

Supplementary Fig. 7

The original phylogenetic tree constructed using Maximum Likelihood phylogeny by Kishino-Yano method (Hasegawa et al. 1985) based on the fragment of the 16S rRNA gene with a distance scale (PNG 25 kb)

Supplementary Table 1

16S rRNA gene sequence identity of Dickeya fangzhongdai causing soft rot of Dendrobium nobile with other type-strains representing diverse hosts or habitats (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balamurugan, A., Kumar, A., Sakthivel, K. et al. Characterization of Dickeya fangzhongdai causing bacterial soft rot disease on Dendrobium nobile in India. Eur J Plant Pathol 158, 773–780 (2020). https://doi.org/10.1007/s10658-020-02094-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02094-7

Keywords

Navigation