Abstract
Root rot is an emerging disease of grafted watermelon in China that causes severe yield losses. The causal agents associated with this disease were characterized in this study. A total of 70 fungal isolates were recovered from infected roots, and the most prevalent isolates were identified as Fusarium oxysporum (31% of isolates recovered). F. oxysporum isolates induced typical root rot disease symptoms in pathogenicity tests, whereas the other isolates were nonpathogenic. On the basis of combined DNA sequence analyses, specific pathogenicity tests and root rot symptoms, the F. oxysporum was identified as F. oxysporum f. sp. radicis-lagenariae. We evaluated 37 bottle gourd rootstocks for resistance to F. oxysporum f. sp. radicis-lagenariae. The mean disease rating scores (DRSs) ranged from 1.1 to 4.0 at 20 days after inoculation. The rootstock 16S-71 was most resistant to infection. These findings provide useful information for the development of bottle gourd rootstocks with resistance to fusarium root rot and to manage this disease.
This is a preview of subscription content,
to check access.





Similar content being viewed by others
References
Alan, O., Duzyaman, E., & Sen, F. (2017). How growing cycles affect plant growth and yield of grafted watermelon combinations. Fresenius Environmental Bulletin, 26(6), 4214–4221.
Armengol, J., José, C. M., Moya, M. J., Sales, R., Vicent, A., & García-Jiménez, J. (2010). Fusarium solani f.sp. cucurbitae race 1, a potential pathogen of grafted watermelon production in Spain. Bulletin OEPP, 30, 179–183.
Beltrán, R., Vicent, A., Garcia-Jimenez, J., & Armengol, J. (2008). Comparative epidemiology of Monosporascus root rot and vine decline in muskmelon, watermelon, and grafted watermelon crops. Plant Disease, 92, 158–163.
Boughalleb, N., Armengol, J., & Mahjoub, M. E. (2005). Detection of races 1 and 2 of fusarium solani f.sp. cucurbitae and their distribution in watermelon fields in Tunisia. Journal of Phytopathology, 153, 162–168.
Cohen, R., Burger, Y., Horev, C., Koren, A., & Edelstein, M. (2007). Introducing grafted cucurbits to modern agriculture. The Israeli experience. Plant Disease, 91, 916–923.
Cohen, R., Tyutyunik, J., Fallik, E., Oka, Y., Tadmor, Y., & Edelstein, M. (2014). Phytopathological evaluation of exotic watermelon germplasm as a basis for rootstock breeding. Scientia Horticulturae, 165, 203–210.
Davis, A. R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J. V., Lee, S. G., Huh, Y. C., Sun, Z. Y., Miguel, A., King, S. R., Cohen, R., & Lee, J. M. (2008). Cucurbit grafting. Critical Reviews in Plant Sciences, 27, 50–74.
Edel-Hermann, V., & Lecomte, C. (2019). Current status of Fusarium oxysporum formae speciales and races. Phytopathology, 109, 512–530.
Erper, I., Agustí-Brisach, C., Tunali, B., & Armengol, J. (2013). Characterization of root rot disease of kiwifruit in the Black Sea region of Turkey. European Journal of Plant Pathology, 136, 291–300.
Gamliel, A., Austerweil, M., & Kritzman, G. (2000). Non-chemical approach to soil-borne pest management-organic amendments. Crop Protection, 19, 847–853.
Haapalainen, M., Latvala, S., Kuivainen, E., Qiu, Y., Segerstedt, M., & Hannukkala, A. O. (2016). Fusarium oxysporum, F. prolilferatum and F. redolens associated with basal rot of onion in Finland. Plant Pathology, 65, 1310–1320.
Hanson, L., Lucchi, C. D., Stevanato, P., McGrath, M., Panella, L., Sella, L., Biaggi, M. D., & Concheri, G. (2018). Root rot symptoms in sugar beet lines caused by Fusarium oxysporum f.sp. betae. European Journal of Plant Pathology, 150, 589–593.
Hopkins, D. L., & Elmstrom, G. W. (1984). Fusarium wilt in watermelon cultivars grown in a 4-year monoculture. Plant Disease, 68, 129–131.
Hussein, S. N., & Juber, K. S. (2014). Identification of the causal agent of crown and root rot disease of watermelon and efficiency of disease control under greenhouse conditions. Iraqi Journal of Agricultural Science, 46, 11–20.
Ikeda, K., Kuwabara, K., Urushibara, T., Soyai, P., Miki, S., & Shibata, S. (2012). Pink root rot of squash caused by Setophoma terrestris in Japan. Journal of General Plant Pathology, 78, 372–375.
Jiang, W., Kong, Q. S., & Bie, Z. L. (2014). Isolation and identification of the dominant pathogens causing root rot of grafted watermelon. The first ISHS international symposium on vegetable grafting, Wuhan, China.
Jie, D. F., & Wei, X. (2018). Review on the recent progress of non-destructive detection technology for internal quality of watermelon. Computers and Electronics in Agriculture, 151, 156–164.
Keinath, A. P. (2007). Sensitivity of populations of Phytophthora capsici from South Carolina to mefenoxam, dimethomorph, zoxamide and cymoxanil. Plant Disease, 91, 743–748.
King, S. R., Davis, A. R., Zhang, X., & Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127, 106–111.
Kousik, C. S., & Keinath, A. P. (2008). First report of insensitivity to cyazofamid among isolates of Phytophthora capsici from the southeastern United States. Plant Disease, 92, 979.
Kousik, C. S., & Thies, J. A. (2007). Response of US bottle gourd (Lagenaria siceraria) plant introductions to Phytophthora capsici. In: 1st International Phytophthora capsici Conference, Islamorada, FL. pp 27.
Kousik, C. S., Donahoo, R. S., & Hassell, R. (2012). Resistance in watermelon rootstocks to crown rot caused by Phytophthora capsici. Crop Protection, 39, 18–25.
Lee, J. M. (1994). Cultivation of grafted vegetables. 1. Current status, grafting methods and benefits. HortScience, 29, 235–239.
Lee, J. M., & Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, 28, 61–124.
Liu, N., Xu, S. C., Yao, X. F., Zhang, G. W., Mao, W. H., Hu, Q. Z., Feng, Z. J., & Gong, Y. M. (2016). Studies on the control of Ascochyta blight in field peas (Pisum sativum L.) caused by Ascochyta pinodes in Zhejiang province, China. Frontiers in Microbiology, 7, 481.
Lombard, L., Sandoval-Denis, M., Lamprecht, S. C., & Crous, P. W. (2019a). Epitypification of Fusarium oxysporum – Clearing the taxonomic chaos. Persoonia, 43, 1–47.
Lombard, L., Sandoval-Denis, M., Cai, L., & Crous, P. W. (2019b). Changing the game: Resolving systematic issues in key Fusarium species complexes. Persoonia, 43, i–ii.
Manjukarunambika, K., Ponmurugan, P., & Marimuthu, S. (2013). Efficacy of various fungicides and indigenous biocontrol agents against red root rot disease of tea plants. European Journal of Plant Pathology, 137, 67–78.
Martyn, R. D., & Bruton, B. D. (1989). An initial survey of the United States for races of Fusarium oxysporum f. sp. niveum. HortScience, 24, 696–698.
Martyn, R. D., Lovic, B. R., Maddox, D. A., Germash, A., & Miller, M. E. (1994). First report of monosporascus root-rot vine decline of watermelon in Tunisia. Plant Disease, 78, 1220–1220.
Martyn, R. D., Batten, J. S., Park, Y. J., & Miller, M. E. (1996). First report of monosporascus root rot/vine decline of watermelon in Mexico. Plant Disease, 80, 1430–1430.
Matsuo, T., & Yamamoto, I. (1967). On Fusarium oxysporum f.sp. lageneriae n.f. causing wilt of Lagenaria vulgaris var. hispida. Transactions of the Mycological Society of Japan, 8, 61–63.
Nischwitz, C., Chitrampalam, P., & Olsen, M. (2013). Ceratobasidium root rot: A new disease of watermelon in Arizona. Phytopathology, 103, 103–103.
Niu, M. L., Huang, Y., Sun, S. T., Sun, J. Y., Cal, H. S., Shabala, S., & Bie, Z. L. (2018). Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure. Journal of Experimental Botany, 69(14), 3465–3476.
Noh, J. J., Kim, W., Lee, K. K., So, S. Y., Ko, B. R., & Kim, D. H. (2007). Effect of furrow mulching with PE black film and dripping of phosphorus acid on control of phytophthora root and fruit rot (Phytophthora capsici) occurred in field-grown watermelon. Korean Journal of Horticultural Science & Trchnology, 25, 24–28.
Ntatsi, G., Sawas, D., Kläring, H. P., & Schwarz, D. (2014). Growth, yield, and metabolic responses of temperature-stressed tomato to grafting onto rootstocks differing in cold tolerance. Journal of the American Society for Horticultural Science, 139, 230–243.
Oda, M. (1993). Present state of vegetable production using grafted plants in Japan. Agriculture and Horticulture, 68, 442–446.
Oda, M. (2002). Grafting of vegetable crops, vol. 53. Sci Rep. Agric. Biol. Sci. (pp. 1-5) Osaka Pref. Univ,
Sánchez-Rodríguez, E., Romero, L., & Ruiz, J. M. (2016). Accumulation on free polyamines enhanced antioxidant response in fruit of grafting tomato plants under water stress. Journal of Plant Physiology, 190, 72–78.
Shishido, M., Hata, T., & Yokoyama, T. (2017). Root-knot nematodes do not affect black root rot disease severity on watermelon and bottle gourd. Plant Pathology, 66, 606–611.
Wei, Z., Yang, X. M., Yin, S. X., Shen, Q. R., Ran, W., & Xu, Y. C. (2011). Efficacy of Bacillusfortified organic fertiliser in controlling bacterial wilt of tomato in the field. Applied Soil Ecology, 48, 152–159.
Weimer, J. L. (1944). Some root rots and a foot rot of lupines in the southeastern part of the United States. Journal of Agricultural Research, 68, 441–457.
Yetisir, H., & Sari, N. (2007). Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: Plant growth, graft compatibility, and resistance to Fusarium. Turkish Journal of Agriculture Forestry, 31, 381–388.
Yimer, S. M., Ahmed, S., Fininsa, C., Tadesse, N., Hamwieh, A., & Cook, D. R. (2018). Distribution and factors influencing chickpea wilt and root rot epidemics in Ethiopia. Crop Protection, 106, 150–155.
Acknowledgements
This work was supported by the Natural Science Foundation of Jiangsu Province (BK20171323), the National Industrial Technology System for Watermelon & Melon. Title: Breeding of Grafting Rootstocks for Watermelon & Melon (CARS-25), and the Earmarked Fund for Jiangsu Agricultural Industry Technology System (JATS[2018]254).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Human and/or animals rights
No human and/or animal participants were involved in this research.
Informed consent
All authors consent to this submission.
Electronic supplementary material
ESM 1
Primers used for pathogen identification (DOCX 13 kb)
ESM 2
Sequence alignment of Fusarium oxysporum root rot (this work, accession No. MT229320) with sequences of Fusarium oxysporum f. sp. niveum (EU588397.1), Fusarium oxysporum f. sp. Lagenariae (AY354398), Fusarium oxysporum f. sp. cucumerinum (DQ452450), Fusarium oxysporum f. sp. luffae (AY354399.1) and Fusarium oxysporum f. sp. melonis (AY188919). Black regions correspond to nucleotides that are conserved among sequences. (JPG 5400 kb)
ESM 3
Sequence alignment of Fusarium oxysporum root rot (this work, accession No. MT229320) with sequences of Fusarium oxysporum f. sp. niveum (EU588397.1), Fusarium verticillioides (JX915249), Fusarium oxysporum f. sp. Lagenariae (AY354398), Fusarium solani (L36616.1), and Stagonosporopsis cucurbitacearum (KF386571). Black regions correspond to nucleotides that are conserved among sequences. (JPG 6053 kb)
ESM 4
Phenotype of bottle gourd rootstocks inoculated with Fo-5. 16S-71 and 16S-84 are the two moderate resistant accessions with DRS less than 2. 16S-69 is randomly selected as a representative of light resistant accessions (DRS =3.0) and 16S-45 as susceptible accessions (DRS = 4.0). (JPG 2071 kb)
Rights and permissions
About this article
Cite this article
Zhang, M., Yang, X., Xu, J. et al. Characterization of Fusarium root rot disease in grafted watermelon. Eur J Plant Pathol 159, 1–11 (2021). https://doi.org/10.1007/s10658-020-02013-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10658-020-02013-w