Skip to main content
Log in

Phenotypic and genotypic analysis of Pseudomonas syringae recovered from symptomatic beans and associated weeds in Northern Spain

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Thirty isolates of Pseudomonas syringae other than pathovar (pv.) phaseolicola, recovered from beans (18) and weeds (12) in a Northern Spanish region, were studied by a polyphasic approach, including phenotypic tests, detection of levansucrase and toxin (syringomycin and syringopeptin) genes, typing by RAPD (Random Amplified Polymorphic DNA) and PFGE (Pulsed-Field Gel Electrophoresis). The isolates were phenotypically heterogeneous, and both RAPD and PFGE, probed to be highly discriminative, as they were almost able to differentiate at the level of isolate. Phylogenetic analysis based on conserved genes of the core genome (rpoD, gltA and gyrB) distributed the isolates in three different clades (2A, 2B and 2C) belonging to phylogroup 2 of the P. syringae complex. According to toxin production, 18 of them, within clade 2B, were assigned to P. syringae pv. syringae and five of these caused symptoms after experimental inoculation on bean pods. Four of the five pathogenic isolates were obtained from weeds, supporting the role of weeds associated with bean crops, particularly Cyperus rotundus, Malva sylvestris, and Polygonum lapathifolium, as a reservoir of the pathogen. In conclusion, results of this study suggest that apart from P. syringae pv. phaseolicola, P. syringae isolates circulating in our region are mostly epiphytes, and support the role of weeds associated with bean crops as reservoir of pathogenic strains of P. syringae pv. syringae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anonymous (2005). RAPD-primer generator. http://www2.uni-jena.de/biologie/ mikrobio/tipps/rapd.html (accesed 27-11-2012).

  • Ark, P. A. (1940). Bacterial stalk rot of field corn caused by Phytomonas lapsa, n.sp. Phytopathology, 30, 1.

  • Baltrus, D. A., McCann, H. C., & Guttman, D. S. (2017). Evolution, genomics and epidemiology of Pseudomonas syringae. Molecular Plant Pathology, 18, 152–168.

    Article  CAS  PubMed  Google Scholar 

  • Berge, O., Monteil, C. L., Bartoli, C., Chandeysson, C., Guilbaud, C., Sands, D. C., & Morris, C. E. (2014). A User’s guide to a Data Base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS One, 9(9), e105547. https://doi.org/10.1371/journal.pone.0105547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bultreys, A., & Gheysen, I. (1999). Biological and molecular detection of toxic lipodepsipeptide-producing Pseudomonas syringae strains and PCR identification in plants. Applied and Environmental Microbiology, 65, 1904–1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, G. Y., Legard, D. E., Hunter, J. E., & Burr, T. J. (1989). Modified bean pod assay to detect strains of Pseudomonas syringae pv. syringae that cause bacterial brown spot of snap bean. Plant Disease, 73, 419–423.

    Article  Google Scholar 

  • Clarke, C. R., Cai, R., Studholme, D. J., Guttman, D. S., & Vinatzer, B. A. (2010). Pseudomonas syringae strains naturally lacking the classical P. syringae hrp/hrc locus are common leaf colonizers equipped with an atypical type III secretion system. MPMI., 23, 198–210.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, U., Rogall, T., Blöcker, H., Emde, M., & Böttger, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research, 17, 7843–7853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ercolani, G. L., Hagedorn, D. J., Kelman, A., & Rand, R. E. (1974). Epiphytic survival of Pseudomonas syringae on hairy vetch in relation to epidemiology of bacterial brown sport of bean in Wisconsin. Phytopathology., 64, 1330–1339.

    Article  Google Scholar 

  • Fernández-Sanz, A. M., Rodicio, M. R., & González, A. J. (2016). Pseudomonas syringae pv. phaseolicola isolated from weeds in bean crop fields. Letters in Applied Microbiology, 62(4), 344–348.

    Article  PubMed  Google Scholar 

  • González, A. J., & Ávila, M. (2001). Disease of floral buds of kiwifruit in Spain caused by Pseudomonas syringae. Plant Disease, 85, 1287.

    Article  PubMed  Google Scholar 

  • González, A. J., Landeras, E., & Mendoza, M. C. (2000). Pathovars of Pseudomonas syringae causing bacterial brown spot and halo blight in Phaseolus vulgaris L. are distinguishable by ribotyping. Applied and Environmental Microbiology, 66, 850–854.

    Article  PubMed  PubMed Central  Google Scholar 

  • González, A. J., Rodicio, M. R., & Mendoza, M. C. (2003). Identification of an emergent and atypical Pseudomonas viridiflava lineage causing bacteriosis in plants of agronomic importance in a Spanish región. Applied and Environmental Microbiology, 69, 2936–2941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González, A. J., Mendoza, M. C., & Tello, J. (2004). Microorganismos patógenos transmitidos por semillas de judía tipo granja asturiana. Saneamiento de semilla. Eds. SERIDA-KRK. Oviedo, Spain.

  • González, A. J., Fernández, A. M., San José, M., González-Varela, G., & Rodicio, M. R. (2012). A Pseudomonas viridiflava-related bacterium causes a dark-reddish spot disease in Glycine max. Applied and Environmental Microbiology, 78, 3756–3758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goszczynska, T., & Serfontein, J. (1998). Milk-tween agar, a semiselective medium for isolation and differentiation of Pseudomonas syringae pv. syringae, Pseudomonas syringae pv. phaseolicola and Xanthomonas axonopodis pv. phaseoli. Journal of Microbiological Methods, 32, 65–72.

    Article  CAS  Google Scholar 

  • Gross, D. C. (1991). Molecular and genetic analysis of toxin production by pathovars of Pseudomonas syringae. Annual Review of Phytopathology, 29(1), 247–278.

    Article  CAS  Google Scholar 

  • Gross, D. C., & De Vay, J. E. (1977). Production and purification of syringomicin, a phytotoxin produced by Pseudomonas syringae. Physiological Plant Pathology, 11, 13–28.

    Article  CAS  Google Scholar 

  • Gutiérrez-Barranquero, J. A., Carrión, V. J., Murillo, J., Arrebola, E., Arnold, D. L., Cazorla, F. M., & de Vicente, A. (2013). A Pseudomonas syringae diversity survey reveals a differentiated phylotype of the pathovar syringae associated with the mango host and mangotoxin production. Phytopathology, 103, 1115–1129.

    Article  PubMed  Google Scholar 

  • Hirano, S. S., & Upper, C. D. (2000). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae: A pathogen, ice nucleus, and epiphyte. Microbiology and Molecular Biology Reviews, 64, 624–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, F. P., Young, J. M., & Fletcher, M. J. (1998). Preliminary description of biocidal (syringomicin) activity in fluorescent plant pathogenic Pseudomonas species. Journal of Applied Microbiology, 85, 365–371.

    Article  CAS  PubMed  Google Scholar 

  • Hugh, R., & Leifson, E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. Journal of Bacteriology, 66, 24–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter, S. B., Vauterin, P., Lambert-Fair, M. A., Van Duyne, M. S., Kubota, K., Graves, L., Wrigley, D., Barrett, T., & Ribot, E. (2005). Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: Converting the national databases to the new size standard. Journal of Clinical Microbiology, 43, 1045–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, M. S. H., Morgan, R. L., Sarkar, S. F., Wang, P. W., & Guttman, D. S. (2005). Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Applied and Environmental Microbiology, 71, 5182–5191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansing, H., & Rudolph, K. (1990). A sensitive and quick test for determination of bean seed infestation by Pseudomonas syringae pv. phaseolicola. J. Plant Dis Protect, 97, 42–55.

    Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • King, E. O., Raney, M. K., & Ward, D. E. (1954). Two simple media for the demonstration of pyocianin and fluorescin. The Journal of Laboratory and Clinical Medicine, 44, 301–307.

    CAS  PubMed  Google Scholar 

  • Kniskern, J. M., Barrett, L. G., & Bergelson, J. (2011). Maladaptation in wild populations of the generalist planta pathogen Pseudomonas syringae. Evolution, 65, 818–830.

    Article  PubMed  Google Scholar 

  • Laconcha, I., López-Molina, N., Rementería, A., Audicana, A., Perales, I., & Garaizar, J. (1998). Phage typing combined with pulsed-field gel electrophoresis and random amplified polymorphic DNA increases discrimination in the epidemiological analysis of Salmonella enteritidis strains. International Journal of Food Microbiology, 40, 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Latorre, B. A., & Jones, A. L. (1979). Evaluation of weeds and plant refuse as potential sources of inoculum of Pseudomonas syringae in bacterial canker of cherry. Phytopathology, 69, 1122–1125.

    Article  Google Scholar 

  • Legard, D., & Hunter, J. E. (1990). Pathogenicity on bean of Pseudomonas syringae pv. syringae recovered from the phylloplane of weeds and from bean crop residue. Phytopathology, 80, 938–942.

    Article  Google Scholar 

  • Lelliott, R. A., Billing, E., & Hayward, A. C. (1966). A determinative scheme for fluorescent plant pathogenic bacteria. The Journal of Applied Bacteriology, 29, 470–478.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., & Ullrich, M. S. (2001). Characterization and mutational analysis of three allelic lsc genes encoding levansucrase in Pseudomonas syringae. Journal of Bacteriology, 183, 3282–3292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindemann, J., Arny, D. C., & Upper, C. D. (1984). Epiphytic populations of Pseudomonas syringae pv. syringae on snap bean and nonhost plants and the incidence of bacterial brown spot disease in relation to cropping patterns. Phytopathology, 74, 1329–1333.

    Article  Google Scholar 

  • Lindow, S. E. (1985). Ecology of Pseudomonas syringae relevant to the field use of Ice2 deletion mutants constructed in vitro for plant frost control. p. 23-35. En: Halvorson, H. O., Pramer, D., Rogul M. (eds.) Engineered organisms in the environment: Scientific issues. American Society for Microbiology, Washington, D.C. USA.

  • Miyata, M., Aoki, T., Inglish, V., Yoshida, T., & Endo, M. (1995). RAPD analysis of Aeromonas salmonicida and Aeromonas hydrophila. The Journal of Applied Bacteriology, 79, 181–185.

    Article  CAS  PubMed  Google Scholar 

  • Mohr, T. J., Liu, H., Yan, S., Morris, C. E., Castillo, J. A., Jelenska, J., & Vinatzer, B. A. (2008). Naturally occurring nonpathogenic isolates of the plant pathogen Pseudomonas syringae lack a type III secretion system and effector gene orthologues. Journal of Bacteriology, 190, 2858–2870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris, C. E., Sands, D. C., Vinatzer, B. A., Glaux, C., Guilbaud, C., Buffière, A., Yan, S., Dominguez, H., & Thompson, B. M. (2008). The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. The International Society for Microbial Ecology Journal, 2, 321–334.

    CAS  Google Scholar 

  • Morris, C. E., Sands, D. C., Vanneste, J. L., Montarry, J., Oakley, B., Guilbaud, C., & Glaux, C. (2010). Inferring the evolutionary history of the plant pathogen Pseudomonas syringae from its biogeography in headwaters of rivers in north. MBIO, 1, 107–110.

    Article  CAS  Google Scholar 

  • Noval, C. (1991). Medios de cultivo y pruebas de diagnóstico. p 379–410. En: Manual de Laboratorio. Diagnóstico de hongos, bacterias y nematodos fitopatógenos Ed. MAPA. Madrid, Spain.

  • O’Brien, H. E., Thakur, S., & Guttman, D. S. (2011). Evolution of plant pathogenesis in Pseudomonas syringae: A genomics perspective. Annual Review of Phytopathology, 49, 269–289.

    Article  PubMed  CAS  Google Scholar 

  • PAMBD, Plant Associated and Environmental Microbes Database. (2019). http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl.

  • Quigley, N. B., & Gross, D. C. (1994). Syringomycin production among strains of Pseudomonas syringae pv. syringae: Conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules. Mol. Plant Microbe Interact., 7(1), 78–90.

    Article  CAS  Google Scholar 

  • Ramette, A., Frapolli, M., Fischer-Le Saux, M., Gruffaz, C., Meyer, J. M., Défago, G., Sutra, L., & Moënne-Loccoz, Y. (2012). Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Systematic and Applied Microbiology, 34, 180–188.

    Article  CAS  Google Scholar 

  • San José, M., Rodicio, M. R., Argudín, M. A., Mendoza, M. C., & González, A. J. (2010). Regional variations in the population structure of Pseudomonas syringae pathovar phaseolicola from Spain are revealed by typing with PmeI pulsed-field gel electrophoresis, plasmid profiling and virulence gene complement. Microbiology, 156, 1795–1804.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, S. F., & Guttman, D. S. (2004). Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Applied and Environmental Microbiology, 70, 1999–2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar, S. F., Gordon, J. S., Martin, G. B., & Guttman, D. S. (2006). Comparative genomics of host-specific virulence in Pseudomonas syringae. Genetics., 174, 1041–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawada, H., Suzuki, F., Matsuda, I., & Saitou, N. (1999). Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. Journal of Molecular Evolution, 49, 627–644.

    Article  CAS  PubMed  Google Scholar 

  • Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant-pathogenic Bacteria (3rd ed.p. 398). St. Paul, MN, USA: CPL APS Press.

    Google Scholar 

  • Scholz-Schroeder, B. K., Hutchison, M. L., Grgurina, I., & Gross, D. C. (2001). The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Mol. Plant Microbe Interact, 14, 336–348.

    Article  CAS  Google Scholar 

  • Scortichini, M., Rossi, M. P., Loreti, S., Bosco, A., Fiori, M., Jackson, R. W., Stead, D. E., Aspin, A., Marchesi, U., Zini, M., & Janse, J. D. (2005). Pseudomonas syringae pv. coryli, the causal agent of bacterial twig dieback of Corylus avellana. Phytopathology., 95, 1316–1324.

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, K. N., Kim, K. H., & Takemoto, J. Y. (1998). PCR detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains. Applied and Environmental Microbiology, 64, 226–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.

    CAS  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA 6: Molecular evolutionary genetics analysis version 6. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, J. G. K., Kubelin, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, J. M. (2010). Taxonomy of Pseudomonas syringae. J Plant Pathol. 92 (1. Supplement), 5-14.

  • Young, J. M., & Triggs, C. M. (1994). Evaluation of determinative tests for pathovars of Pseudomonas syringae van Hall 1902. The Journal of Applied Bacteriology, 77, 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, G.-F., Liu, C.-S., & Chen, C.-C. (1995). Differentiation of Aspergillus parasiticus from Aspergillus sojae by random amplification of polymorphic DNA. Applied and Environmental Microbiology, 61(6), 2384–2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Ana M. Fernández-Sanz was the recipient of a grant from the “Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria”. The work was supported by Project RTA2008-00019 from the “Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria”. Both, Grant and Project were co-funded with FEDER funds. We thank the farmers who participated in the work, especially Manuel Garcia, and the “Consejo Regulador de la Denominación Específica Faba de Asturias” for their help during sampling.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by A.M. Fernández-Sanz and A.J. González. All authors have contributed to writing the manuscript and approved it.

Corresponding author

Correspondence to Ana J. González.

Ethics declarations

The authors declare that the work is in compliance with ethical standards:

- The authors declare that they have no conflict of interest.

- This manuscript does not contain research involving human participants and/or animals.

- The authors all agreed on this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Sanz, A.M., Rodicio, M.R. & González, A.J. Phenotypic and genotypic analysis of Pseudomonas syringae recovered from symptomatic beans and associated weeds in Northern Spain. Eur J Plant Pathol 157, 377–387 (2020). https://doi.org/10.1007/s10658-020-02010-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02010-z

Keywords

Navigation