Skip to main content
Log in

Influence of rootstock genotype on efficacy of anaerobic soil disinfestation for control of apple nursery replant disease

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Apple replant disease (ARD) in production nurseries can negatively impact commercial viability by diminishing tree quality and potentially serving as a source of pathogen inoculum. The current study was carried out to determine the potential for plant genotype to influence anaerobic soil disinfestation (ASD) disease control efficacy. M.9, G.41, and G.935 apple rootstock genotypes were employed. ASD was conducted using orchard grass as the carbon input (10 t ha−1 or 20 t ha −1). Rootstock growth in ASD-treated soils was comparable to that attained in response to soil pasteurization or fumigation with 1,3-dichloropropene/chloropicrin (FUM) in both greenhouse (GT) and nursery field trials (NFT). In GT, Rhizoctonia solani AG-5 root infection and growth performance varied with rootstock genotype and soil treatment. ASD reduced pathogen DNA quantity in roots and improved rootstock growth. Genotype, but not soil treatment, influenced root infestation by Pythium ultimum and R. solani in the NFT. ASD with grass input at 20 t ha −1 improved soil nutrient levels, especially NO3 N, and provided significant weed control in the NFT. Treatments significantly altered composition of the bulk soil and rhizosphere microbiome in GT and these effects were prolonged in ASD-treated soils. In NFT, ASD conducted with orchard grass was uniformly as effective as FUM in the control of ARD and increase in trunk diameter increment, the primary determinant of apple rootstock value. This ASD treatment can be suggested as a potential method for effective control of nursery replant disease across rootstock genotypes varying in disease tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aslam, D. N., & VanderGheynst, J. S. (2008). Predicting phytotoxicity of compost-amended soil from compost stability measurements. Environmental Engineering Science, 25, 72–81.

    Article  CAS  Google Scholar 

  • Atucha, A., Emmett, B., & Bauerle, T. L. (2014). Growth rate of fine root systems influences rootstock tolerance to replant disease. Plant and Soil, 376, 337–346.

    Article  CAS  Google Scholar 

  • Auvil, T. D., Schmidt, T. R., Hanrahan, I., Castillo, F., McFerson, J. R., & Fazio, G. (2011). Evaluation of dwarfing rootstocks in Washingotn apple replant sites. Acta Horticulturae, 903, 265–271.

    Article  Google Scholar 

  • Bezuidenhout, C. M., van Schoor, L., & Cook, N. C. (2014). Rootstocks evaluated for apple replant disease tolerance. Acta Horticulturae, 1058, 553–558.

    Article  Google Scholar 

  • Bruns, T. D., White, T. J., & Taylor, W. J. (1991). Fungal molecular systematics. Annual Review of Ecology and Systematics, 22, 525–564.

    Article  Google Scholar 

  • Burt, R. (1996). Soil survey laboratory methods manual. National Soil Survey Center, Natural Resources Conservation Service, United States Department of Agriculture. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1026806.pdf

  • Butler, D. M., Rosskopf, E. N., Kokalis-Burelle, N., Albano, J. P., Muramoto, J., & Shennan, C. (2012). Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation (ASD). Plant and Soil, 355, 149–165.

    Article  CAS  Google Scholar 

  • Butler, D. M., Ownley, B. H., Dee, M. E., Eichler Inwood, S. E., McCarty, D. G., Shrestha, U., et al. (2014). Low carbon amendment rates during anaerobic soil disinfestation (ASD) at moderate soil temperatures do not decrease viability of Sclerotinia sclerotiorum sclerotia or Fusarium root rot of common bean. Acta Horticulturae, 1044, 203–208.

    Article  Google Scholar 

  • Deakin G., Fernández-Fernández, F., Bennett, J., Passey, T., Harrison, N., Tilston, E. L., et al. (2019). The effect of rotating apple rootstock genotypes on apple replant disease and rhizosphere microbiome. Phytobiomes, doi.org/10.1094/PBIOMES-03-19-0018-R.

  • Emmett, B., Nelson, E. B., Kessler, A., & Bauerle, T. L. (2014). Fine-root system development and susceptibility to pathogen colonization. Planta, 239, 325–340.

    Article  CAS  PubMed  Google Scholar 

  • Fazio, G., & Mazzola, M. (2004). Target traits for the development of marker assisted selection of apple rootstocks-prospects and benefits. Acta Horticulturae, 663, 823–828.

    Article  Google Scholar 

  • Fazio, G., Aldwinckle, H., & Robinson, T. (2013). Unique characteristics of Geneva® apple rootstocks. New York Fruit Quarterly, 21, 25–28.

    Google Scholar 

  • Gaines, X. M., & Swan, D. G. (1972). Weeds of eastern Washington and adjacent areas (349 pp). Davenport, WA: Camp-Na-Bor-Lee Association.

    Google Scholar 

  • Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Gergerich, R. C., Welliver, R. A., Gettys, S., Osterbauer, N. K., Kamenidou, S., Martin, R. R., et al. (2015). Safeguarding fruit crops in the age of agricultural globalization. Plant Disease, 99, 176–187.

    Article  PubMed  Google Scholar 

  • Goud, J. C., Termorshuizen, A. J., Blok, W. J., & van Bruggen, A. H. C. (2004). Long-term effect of biological soil disinfestation on Verticillium wilt. Plant Disease, 88, 688–694.

    Article  PubMed  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST:Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

    Google Scholar 

  • Harrington, J. T., Mexal, J. G., & Fisher, J. T. (1994). Volume displacement provides a quick and accurate way to quantify new root production. Tree Planters’ Notes, 45, 121–124.

    Google Scholar 

  • Harshman, J. M., & Evans, K. M. (2015). Survey of moldy core incidence in germplasm from three U.S. apple breeding programs. Journal of the American Pomological Society, 69, 51–57.

    Google Scholar 

  • Hewavitharana, S. S., & Mazzola, M. (2016). Carbon source-dependent effects of anaerobic soil disinfestation on soil microbiome suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans. Phytopathology, 106, 1015–1028.

    Article  CAS  PubMed  Google Scholar 

  • Hewavitharana, S. S., Klarer, E., Reed, A. J., Leisso, R., Poirier, B., Honaas, L., Rudell, D. R., & Mazzola, M. (2019). Temporal dynamics of the soil metabolome and microbiome in response to anaerobic soil disinfestation. Frontiers in Microbiology, 10, 2365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoagland, D.R. & Aron, D.I. (1938). The water-culture method for growing plants without soil. Circular (California Agricultural Experiment Station), 347. eds. Berkeley, California, University of California, College of Agriculture, Agricultural Experiment Station.

  • Hoagland, L., Carpenter-Boggs, L., Granatstein, D., Mazzola, M., Smith, J., Peryea, F., & Reganold, J. P. (2008). Orchard floor management effects on nitrogen fertility and soil biological activity in a newly established apple orchard. Biology and Fertility of Soils, 45, 11–18.

    Article  Google Scholar 

  • Hoitink, H. A. J., & Boehm, M. J. (1999). Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annual Review of Phytopathology, 37, 427–446.

    Article  CAS  PubMed  Google Scholar 

  • Igarashi, M., Hatsuyama, Y., Harada, T., & Fukasawa-Akada, T. (2016). Biotechnology and apple breeding in Japan. Breeding Science, 66, 18–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isutsa, D. K., & Merwin, I. A. (2000). Malus germplasm varies in resistance or tolerance to apple replant disease in a mixture of New York orchard soils. HortScience, 35, 262–268.

    Article  Google Scholar 

  • Johnson, W. C. (2000). Methods and results of screening for disease- and insect-resistant apple rootstocks. Compact Fruit Tree, 33, 108–111.

    Google Scholar 

  • Kviklys, D., Robinson, T. L., & Fazio, G. (2016). Apple rootstock evaluation for apple replant disease. Acta Horticulturae, 1130, 425–430.

    Article  Google Scholar 

  • Leisso, R., Rudell, D., & Mazzola, M. (2017). Metabolic composition of apple rootstock rhizodeposits differs in a genotype-specific manner and affects growth of subsequent plantings. Soil Biology and Biochemistry, 113, 201–214.

    Article  CAS  Google Scholar 

  • Lembright, H. W. (1990). Soil fumigation: Principles and application technology. Journal of Nematology, 22, 632–644.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manici, L. M., Caputo, F., & Bambini, V. (2004). Effect of green manure on Pythium spp. population and microbial communities in intensive cropping systems. Plant and Soil, 263, 133–142.

    Article  CAS  Google Scholar 

  • Mazzola, M. (1997). Identification and pathogenicity of Rhizoctonia spp. isolated from apple roots and orchard soils. Phytopathology, 87, 582–587.

    Article  CAS  PubMed  Google Scholar 

  • Mazzola, M. (1998). Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology, 88, 930–938.

    Article  CAS  PubMed  Google Scholar 

  • Mazzola, M., & Brown, J. (2010). Efficacy of Brassicaceous seed meal formulations for the control of apple replant disease in conventional and organic production systems. Plant Disease, 94, 835–842.

    Article  CAS  PubMed  Google Scholar 

  • Mazzola, M., & Manici, L. M. (2012). Apple replant disease: Role of microbial ecology in cause and control. Annual Review of Phytopathology, 50, 45–65.

    Article  CAS  PubMed  Google Scholar 

  • Mazzola, M., & Zhao, X. (2010). Brassica juncea seed meal particle size influences chemistry but not soil biology-based suppression of individual agents inciting apple replant disease. Plant and Soil, 337, 313–324.

    Article  CAS  Google Scholar 

  • Mazzola, M., Granatstein, D. M., Elfving, D. C., & Mullinix, K. (2001). Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content. Phytopathology, 91, 673–679.

    Article  CAS  PubMed  Google Scholar 

  • Mazzola, M., Brown, J., Zhao, Z., & Izzo, A. (2009). Interaction of Brassicaceous seed meal and apple rootstock on recovery of Pythium spp. and Pratylenchus penetrans from roots grown in replant soils. Plant Disease, 93, 51–57.

    Article  PubMed  Google Scholar 

  • Mazzola, M., Hewavitharana, S. S., & Strauss, S. L. (2015). Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation. Phytopathology, 105, 460–469.

    Article  CAS  PubMed  Google Scholar 

  • Messiha, N., van Diepeningen, A., Wenneker, M., van Beuhingen, A., Janse, J., Coenen, T., et al. (2007). Biological soil disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. European Journal of Plant Pathology, 117, 403–415.

    Article  Google Scholar 

  • Moein, S., Mazzola, M., Ntushelo, N. S., & McLeod, A. (2019). Apple nursery trees and irrigation water as potential external inoculum sources of apple replant disease in South Africa. European Journal of Plant Pathology, 153, 1131–1147.

    Article  Google Scholar 

  • Norelli, J. L., Holleran, H. T., Johnson, W. C., Robinson, T. L., & Aldwinckle, H. S. (2003). Resistance of Geneva and other apple rootstocks to Erwinia amylovora. Plant Disease, 87, 26–32.

    Article  CAS  PubMed  Google Scholar 

  • Ramos, D. E. (1998). Walnut production manual publication 3373. Oakland: University of California Division of Agriculture and Natural Resources.

    Google Scholar 

  • Reim, S., Siewert, C., Winkelmann, T., Wöhner, T, Hanke, M., & Flachowsky, H. (2019). Evaluation of Malus genetic resources for tolerance to apple replant disease (ARD). Scientia Horticulturae, https://doi.org/10.1016/j.scienta.2019.05.044.

  • Robinson, T., Fazio, G., & Aldwinckle, H. (2014). Characteristics and performance of four new apple rootstock from the Cornell-USDA apple rootstock breeding program. Acta Horticulturae, 1058, 651–656.

    Article  Google Scholar 

  • Rumberger, A., Shengrui, Y., Merwin, I. A., Nelson, E. B., & Thies, E. J. (2004). Rootstock genotype and orchard re-plant position rather than soil fumigation or compost amendment determine tree growth and rhizosphere bacterial community composition in an apple replant soil. Plant and Soil, 264, 247–260.

    Article  CAS  Google Scholar 

  • Rumberger, A., Merwin, I., & Thies, J. E. (2007). Microbial community development in the rhizosphere of apple trees at a replant disease site. Soil Biology and Biochemistry, 39, 1645–1654.

    Article  CAS  Google Scholar 

  • Runia, W. T., Thoden, T. C., Molendijk, L. P. G., van den Berg, W., Termorshuizen, A. J., Streminska, M. A., et al. (2014). Unravelling the mechanism of pathogen inactivation during anaerobic soil disinfestation. Acta Horticulturae, 1044, 177–193.

    Article  Google Scholar 

  • Schroeder, K. L., Okubara, P. A., Tambong, J. T., Lévesque, C. A., & Paulitz, T. C. (2006). Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using real-time polymerase chain reaction. Phytopathology, 96, 637–647.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, M., Schmid, M., Rothballer, M., Hause, G., Zuccaro, A., Imani, J., Kämpfer, P., Domann, E., Schäfer, P., Hartmann, A., & Kogel, K. H. (2008). Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cellular Microbiology, 10, 2235–2246.

    Article  CAS  PubMed  Google Scholar 

  • Shin, S. B., Zheng, P., Fazio, G., Mazzola, M., Main, D., & Zhu, Y. (2016). Transcriptome changes specifically associated with apple (Malus domestica) root defense response during Pythium ultimum infection. Physiological and Molecular Plant Pathology, 94, 16–26.

    Article  CAS  Google Scholar 

  • Shrestha, U., Auge, R., & Butler, D. (2016). A meta-analysis of the impact of anaerobic soil disinfestation on pest suppression yield of horticultural crops. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.01254.

  • Somers, E., Vanderleyden, J., & Srinivasan, M. (2004). Rhizosphere bacterial signaling: A love parade beneath our feet. Critical Reviews in Microbiology, 30, 205–240.

    Article  CAS  PubMed  Google Scholar 

  • St. Laurent, A., Merwin, I. A., Fazio, G., Thies, J. E., & Brown, M. G. (2010). Rootstock genotype succession influences apple replant disease and root zone microbial community composition in an orchard soil. Plant and Soil, 337, 259–272.

    Article  CAS  Google Scholar 

  • Strauss, S. L., Greenhut, R. F., McClean, A. E., & Kluepfel, D. A. (2017). Effect of anaerobic soil disinfestation on the bacterial community and key soil-borne phytopathogenic agents under walnut tree-crop nursery conditions. Plant and Soil, 415, 493–506. https://doi.org/10.1007/s11104-016-3126-4.

    Article  CAS  Google Scholar 

  • Streminska, M. A., van der Wurff, A. W. G., Runia, W. T., Thoden, T. C., Termorshuizen, A. J., & Feil, H. (2014). Changes in bacterial and fungal abundance in the soil during the process of anaerobic soil disinfestation. Acta Horticulturae, 1041, 95–102.

    Article  Google Scholar 

  • Tewoldemedhin, Y. T., Mazzola, M., Labuschagne, I., & McLeod, A. (2011). A multi-phasic approach reveals that apple replant disease is caused by multiple biological agents, with some agents acting synergistically. Soil Biology and Biochemistry, 43, 1917–1927.

    Article  CAS  Google Scholar 

  • Tidball, C. J. (1990). Phytophthora root and stem rot of apple rootstocks from stool beds. Plant Disease, 74, 141–146.

    Article  Google Scholar 

  • van Agtmaal, M., van Os, G. J., Hol, W. H. G., Hundscheid, M. P. J., Runia, W. T., Hordijk, C. A., et al. (2015). Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2015.00701.

  • Wang, L., & Mazzola, M. (2019a). Interaction of Brassicaceae seed meal soil amendment and apple rootstock genotype on microbiome structure and replant disease suppression. Phytopathology, 109, 607–614.

    Article  PubMed  Google Scholar 

  • Wang, L., & Mazzola, M. (2019b). Field evaluation of reduced rate Brassicaceae seed meal amendment and rootstock genotype on the microbiome and control of apple replant disease. Phytopathology, 109, 1378–1391.

    Article  PubMed  Google Scholar 

  • Weerakoon, D. M. N., Reardon, C. L., Paulitz, T. C., Izzo, A. D., & Mazzola, M. (2012). Long-term suppression of Pythium abappressorium induced by Brassica juncea seed meal amendment is biologically mediated. Soil Biology and Biochemistry, 51, 44–52.

    Article  CAS  Google Scholar 

  • Winkelmann, T., Smalla, K., Amelung, W., Baab, G., Grunewaldt-Stöcker, G., Kanfra, X., Meyhöfer, R., Reim, S., Schmitz, M., Vetterlein, D., Wrede, A., Zühlke, S., Grunewaldt, J., Weiß, S., & Schloter, M. (2019). Apple replant disease: Causes and mitigation strategies. Current Issues in Molecular Biology, 30, 89–106.

    Article  PubMed  Google Scholar 

  • Yonemoto, K., Hirota, K., Mizuguchi, S., & K. Sakaguchi. (2006). Utilization of the sterilization by soil reduction in an open air field its efficacy against Fusarium wilt of strawberry. Pages 15–24 in: Proceedings of Association of Plant. Protection, Shikoku.

  • Zhu, Y., Shin, S., & Mazzola, M. (2016). Genotype responses of two apple rootstocks to infection by Pythium ultimum causing apple replant disease. Canadian Journal of Plant Pathology, 38, 483–491.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Institute of Food and Agriculture, United States Department of Agriculture, under award number 2016 -51102-25815. Authors acknowledge Trident AG Products Inc. (Woodland, WA) for supporting this research by generously conducting soil fumigation. We also thank Danielle Graham for taxonomic identification of weed species, and Sheila K. Ivanov, Xiaowen Xiao, Kevin Hansen, Edward Valdez, Drew Reed, Parama Sikdar, Emmi Klarer, Cyrus Desmaris, Joy Lawless and Steven Lawless for their excellent technical support in this study.

Funding

As stated in acknowledgements, this work was funded by the National Institute of Food and Agriculture, United States Department of Agriculture, under award number 2016–51102-25,815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Mazzola.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest in the reporting of this work.

Research involving human participants and/or animals

No human participants nor animals were involved in the conduct of this research.

Informed consent

Not relevant to this work.

Electronic supplementary material

ESM 1

(DOCX 557 kb)

ESM 2

(DOCX 561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hewavitharana, S.S., Mazzola, M. Influence of rootstock genotype on efficacy of anaerobic soil disinfestation for control of apple nursery replant disease. Eur J Plant Pathol 157, 39–57 (2020). https://doi.org/10.1007/s10658-020-01977-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-01977-z

Keywords

Navigation