Skip to main content
Log in

Virulence/avirulence patterns among Leptosphaeria maculans isolates determines expression of resistance, senescence and yellowing in cotyledons of Brassica napus

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Blackleg, (stem canker, Leptosphaeria maculans), is the most economically important disease on oilseed rape (Brassica napus). Studies were undertaken to determine the effect of three different L. maculans isolates with different virulence/avirulence patterns on the expression of qualitative resistance and senescence on cotyledons of 11 B. napus genotypes. There were significant differences between genotypes (P < 0.01), isolates (P < 0.01) and a significant genotype by isolate interaction (P < 0.01) in terms of disease index and lesion diameter. Overall, B. napus LSF0530 was more resistant than Barrel > Scotia > Amber x Commanche DH Line. Westar, Drummonds Purple Top, and Parkside were the most susceptible. L. maculans isolates D5 and D13 were the most pathogenic, showing the greatest disease index and lesion diameters. Genotypes such as LSF0530, Scotia, Duell and Barrel responded with a distinct hypersensitive response, whereas Parkside, Drummonds Purple Top, Amber x Commanche DH Line and Westar all showed a distinct yellow halo around the lesions, indicative of cotyledon senescence likely involving programmed cell death (PCD). However, expression of the distinct yellow halo symptom was not observed in all B. napus genotypes infected by one specific L. maculans isolate nor in one specific B. napus genotype challenged with all the isolates. We believe that this is the first report, i), showing the involvement of a distinct yellow halo (senescence/PCD) associated with both ‘typical’ lesions and with an expression of HR in cotyledons of winter-type B. napus genotypes challenged with L. maculans isolates and, ii), that expression of the distinct yellow halo is clearly dependent on the interaction between particular isolate virulence(s) x particular winter-type B. napus genotype combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balesdent, M. H., Attard, A., Kuhn, M. L., & Rouxel, T. (2002). New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans. Phytopathology, 92, 1122–1133.

    CAS  PubMed  Google Scholar 

  • Balesdent, M. H., Barbetti, M. J., Li, H., Sivasithamparam, K., Gout, L., & Rouxel, T. (2005). Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates. Phytopathology, 95(9), 1061–1071.

    CAS  PubMed  Google Scholar 

  • Balesdent, M. H., Fudal, I., Ollivier, B., Bally, P., Grandaubert, J., Eber, F., et al. (2013). The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytologist, 198, 887–898.

    CAS  PubMed  Google Scholar 

  • Barbetti, M. J., & Khangura, R. K. (1999). Management of blackleg in disease- prone environments of WA. In The 10th International Rapeseed Congress, Canberra, Australia, 1999: The Regional Institute online publishing.

  • Cargeeg, L. A., & Thurling, N. (1980). Seedling and adult plant resistance to blackleg (Leptosphaeria maculans (Desm.) Ces. et de Not.) in spring rape (Brassica napus L.). Australian Journal of Agricultural Research, 31, 37–46.

    Google Scholar 

  • Coll, N. S., Epple, P., & Dangl, J. L. (2011). Programmed cell death in the plant immune system. [review]. Cell Death and Differentiation, 18, 1247–1256.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delourme, R., Chèvre, A. M., Brun, H., Rouxel, T., Balesdent, M. H., Dias, J. S., et al. (2006). Major gene and Polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). European Journal of Plant Pathology, 114, 41–52.

    Google Scholar 

  • Develey-Rivière, M.-P., & Galiana, E. (2007). Resistance to pathogens and host developmental stage: A multifaceted relationship within the plant kingdom. New Phytologist, 175, 405–416.

    PubMed  Google Scholar 

  • Du, J., Li, M., Kong, D., Wang, L., Lv, Q., Wang, J., et al. (2014). Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis. Journal of Experimental Botany, 65, 4051–4063.

    PubMed  Google Scholar 

  • Fudal, I., Ross, S., Gout, L., Blaise, F., Kuhn, M. L., Eckert, M. R., et al. (2007). Heterochromatin-like regions as ecological niches for Avirulence genes in the Leptosphaeria maculans genome: Map-based cloning of AvrLm6. Molecular Plant-Microbe Interactions, 20, 459–470.

    CAS  PubMed  Google Scholar 

  • Ge, X. T., You, M. P., & Barbetti, M. J. (2015). Virulence differences among Sclerotinia sclerotiorum isolates determines host cotyledon resistance responses in Brassicaceae genotypes. European Journal of Plant Pathology, 143, 527–541.

    CAS  Google Scholar 

  • Ghanbarnia, K., Lydiate, D. J., Rimmer, S. R., Li, G., Kutcher, H. R., Larkan, N. J., McVetty, P., & Fernando, W. G. (2012). Genetic mapping of the Leptosphaeria maculans avirulence gene corresponding to the LepR1 resistance gene of Brassica napus. Theoretical and Applied Genetics, 124, 505–513.

    CAS  PubMed  Google Scholar 

  • Ghanbarnia, K., Fudal, I., Larkan, N. J., Links, M. G., Balesdent, M.-H., Profotova, B., Fernando, W. G., Rouxel, T., & Borhan, M. H. (2015). Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. Molecular Plant Pathology, 16, 699–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanbarnia, K., Ma, L., Larkan, N. J., Haddadi, P., Fernando, W. G. D., & Borhan, M. H. (2018). Leptosphaeria maculans AvrLm9: A new player in the game of hide and seek with AvrLm4-7. Molecular Plant Pathology, 19, 1754–1764.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gout, L., Fudal, I., Kuhn, M.-L., Blaise, F., Eckert, M., Cattolico, L., Balesdent, M. H., & Rouxel, T. (2006). Lost in the middle of nowhere: The AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Molecular Microbiology, 60, 67–80.

    CAS  PubMed  Google Scholar 

  • Greenberg, J. T. (1997). Programmed cell death in plant-pathogen interactions. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 525–545.

    CAS  PubMed  Google Scholar 

  • Gunasinghe, N., You, M. P., Banga, S. S., & Barbetti, M. J. (2014). High level resistance to Pseudocercosporella capsellae offers new opportunities to deploy host resistance to effectively manage white leaf spot disease across major cruciferous crops. European Journal of Plant Pathology, 138, 873–890.

    Google Scholar 

  • Hayden, H. L., Cozijnsen, A. J., & Howlett, B. J. (2007). Microsatellite and Minisatellite analysis of Leptosphaeria maculans in Australia reveals regional genetic differentiation. Phytopathology, 97, 879–887.

    CAS  PubMed  Google Scholar 

  • Kabbage, M., Williams, B., & Dickman, M. B. (2013). Cell death control: The interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathogens, 9, 1–12.

    Google Scholar 

  • Klingler, J. P., Nair, R. M., Edwards, O. R., & Singh, K. B. (2009). A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid. Journal of Experimental Botany, 60, 4115–4127.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kombrink, E., & Schmelzer, E. (2001). The hypersensitive response and its role in local and systemic disease resistance. European Journal of Plant Pathology, 107, 69–78.

    Google Scholar 

  • Lam, E. (2004). Controlled cell death, plant survival and development. [review article]. Nature Reviews Molecular Cell Biology, 5, 305–315.

    CAS  PubMed  Google Scholar 

  • Larkan, N. J., Lydiate, D. J., Parkin, I. A. P., Nelson, M. N., Epp, D. J., Cowling, W. A., et al. (2013). The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytologist, 197, 595–605.

    CAS  PubMed  Google Scholar 

  • Li, H., Smyth, F., Barbetti, M. J., & Sivasithamparam, K. (2006). Relationship between Brassica napus seedling and adult plant responses to Leptosphaeria maculans is determined by plant growth stage at inoculation and temperature regime. Field Crops Research, 96, 428–437.

    Google Scholar 

  • Li, H., Kuo, J., Barbetti, M. J., & Krishnapillai, S. (2007a). Differences in the responses of stem tissues of spring-type Brassica napus cultivars with polygenic resistance and single dominant gene-based resistance to inoculation with Leptosphaeria maculans. Canadian Journal of Botany, 85, 191–203.

    Google Scholar 

  • Li, H., Stone, V., Neree, D., Krishnapillai, S., & Barbetti, M. J. (2007b). Breaching by a new strain of Leptosphaeria maculans of anatomical barriers in cotyledons of Brassica napus cultivar surpass 400 with resistance based on a single dominant gene. Journal of General Plant Pathology : JGPP, 73, 297–303.

    CAS  Google Scholar 

  • Li, H., Sivasithamparam, K., Barbetti, M. J., Wylie, S. J., & Kuo, J. (2008). Cytological responses in the hypersensitive reaction in cotyledon and stem tissues of Brassica napus after infection by Leptosphaeria maculans. Journal of General Plant Pathology : JGPP, 74, 120–124.

    Google Scholar 

  • Liu, L., Zhou, Y., Zhou, G., Ye, R., Zhao, L., Li, X., & Lin, Y. (2008). Identification of early senescence-associated genes in rice flag leaves. Plant Molecular Biology, 67, 37–55.

    CAS  PubMed  Google Scholar 

  • Ma, L., & Borhan, M. H. (2015). The receptor-like kinase SOBIR1 interacts with Brassica napus LepR3 and is required for Leptosphaeria maculans AvrLm1-triggered immunity. [original research]. Frontiers in Plant Science, 6(933).

  • Marcroft, S. J., Elliott, V. L., Cozijnsen, A. J., Salisbury, P. A., Howlett, B. J., & Van de Wouw, A. P. (2012). Identifying resistance genes to Leptosphaeria maculans in Australian Brassica napus cultivars based on reactions to isolates with known avirulence genotypes. Crop & Pasture Science, 63, 338–350.

    CAS  Google Scholar 

  • Mengistu, A., Rimmer, R. S., & Williams, P. H. (1993). Protocols for in vitro sporulation, ascospore release, sexual mating, and fertility in crosses of Leptosphaeria maculans. Plant Disease, 77, 538–540.

    Google Scholar 

  • Mohammed, A. E., You, M. P., Banga, S. S., & Barbetti, M. J. (2019). Resistances to downy mildew (Hyaloperonospora brassicae) in diverse Brassicaceae offer new disease management opportunities for oilseed and vegetable crucifer industries. European Journal of Plant Pathology, 153, 67–81.

    Google Scholar 

  • Mur, L. A. J., Kenton, P., Lloyd, A. J., Ougham, H., & Prats, E. (2008). The hypersensitive response; the centenary is upon us but how much do we know? Journal of Experimental Botany, 59, 501–520.

    CAS  PubMed  Google Scholar 

  • Parlange, F., Daverdin, G., Fudal, I., Kuhn, M.-L., Balesdent, M.-H., Blaise, F., Grezes-Besset, B., & Rouxel, T. (2009). Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Molecular Microbiology, 71, 851–863.

    CAS  PubMed  Google Scholar 

  • Plissonneau, C., Daverdin, G., Ollivier, B., Blaise, F., Degrave, A., Fudal, I., et al. (2016). A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. New Phytologist, 209, 1613–1624.

    CAS  PubMed  Google Scholar 

  • Plissonneau, C., Rouxel, T., Chèvre, A. M., Van De Wouw, A. P., & Balesdent, M. H. (2018). One gene-one name: The AvrLmJ1 avirulence gene of Leptosphaeria maculans is AvrLm5. Molecular Plant Pathology, 19, 1012–1016.

    CAS  PubMed  Google Scholar 

  • Pontier, D., Balagué, C., & Roby, D. (1998). The hypersensitive response. A programmed cell death associated with plant resistance. Comptes Rendus de l'Academie des Sciences. Serie III, Sciences de la Vie, 321, 721–734.

    CAS  PubMed  Google Scholar 

  • Purwantara, A., Salisbury, P., Burton, W., & Howlett, B. (1998). Reaction of Brassica juncea (Indian mustard) lines to Australian isolates of Leptosphaeria maculans under glasshouse and field conditions. European Journal of Plant Pathology, 104, 895–902.

    Google Scholar 

  • Rahman, M., Mamidi, S., Rio, L., Ross, A., Kadir, M., Rahaman, M., et al. (2016). Association mapping in Brassica napus (L.) accessions identifies a major QTL for blackleg disease resistance on chromosome A01. Molecular Breeding, 36, 1–15.

    CAS  Google Scholar 

  • Rapp, Y. G., Ransbotyn, V., & Grafi, G. (2015). Senescence meets dedifferentiation. Plants (Basel, Switzerland), 4, 356–368.

    CAS  Google Scholar 

  • Roussel, S., Nicole, M., Lopez, F., Renard, M., Chèvre, A. M., & Brun, H. (1999). Cytological investigation of resistance to Leptosphaeria maculans conferred to Brassica napus by introgressions originating from B. juncea or B. nigra B genome. Phytopathology, 89, 1200–1213.

    CAS  PubMed  Google Scholar 

  • Rouxel, T., & Balesdent, M-H. (2010). Avirulence genes. Wiley Online Library. https://doi.org/10.1002/9780470015902.a0021267 (Accessed 13 Dec 2019).

  • Rouxel, T., Penaud, A., Pinochet, X., Brun, H., Gout, L., Delourme, R., et al. (2003). A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape. European Journal of Plant Pathology, 109, 871–881.

    CAS  Google Scholar 

  • Schmidt, S. M., & Panstruga, R. (2011). Pathogenomics of fungal plant parasites: What have we learnt about pathogenesis? Current Opinion in Plant Biology, 14, 392–399.

    CAS  PubMed  Google Scholar 

  • Sperschneider, J., Dodds, P. N., Gardiner, D. M., Manners, J. M., Singh, K. B., & Taylor, J. M. (2015). Advances and Challenges in Computational Prediction of Effectors from Plant Pathogenic Fungi. PLoS Pathogens, 11, e1004806.

    PubMed  PubMed Central  Google Scholar 

  • Thomas, H., Ougham, H. j., Wagstaff, C., & Stead, A. D. (2003). Defining senescence and death. Journal of Experimental Botany, 54, 1127–11323.

    CAS  PubMed  Google Scholar 

  • Travadon, R., Marquer, B., Ribulé, A., Sache, I., Masson, J. P., Brun, H., et al. (2009). Systemic growth of Leptosphaeria maculans from cotyledons to hypocotyls in oilseed rape: Influence of number of infection sites, competitive growth and host polygenic resistance. Plant Pathology, 58, 461–469.

    Google Scholar 

  • Van De Wouw, A. P., Marcroft, S. J., Barbetti, M. J., Hua, L., Salisbury, P. A., Gout, L., et al. (2009). Dual control of avirulence in Leptosphaeria maculans towards a Brassica napus cultivar with ‘ sylvestris -derived’ resistance suggests involvement of two resistance genes. Plant Pathology, 58, 305–313.

    Google Scholar 

  • Van De Wouw, A. P., Lowe, R. G. T., Elliott, C. E., Dubois, D. J., & Howlett, B. J. (2014). An avirulence gene, AvrLmJ1 , from the blackleg fungus, Leptosphaeria maculans , confers avirulence to Brassica juncea cultivars. Molecular Plant Pathology, 15, 523–530.

    PubMed  Google Scholar 

  • Van de Wouw, A. P., Howlett, B. J., & Idnurm, A. (2018). Changes in allele frequencies of avirulence genes in the blackleg fungus, Leptosphaeria maculans, over two decades in Australia. Crop & Pasture Science, 69, 20–29.

    Google Scholar 

  • Van Doorn, W. G., & Woltering, E. J. (2004). Senescence and programmed cell death: Substance or semantics? Journal of Experimental Botany, 55, 2147–2153.

    PubMed  Google Scholar 

  • Williams, P. H., & Delwiche, P. A. (1979). Screening for resistance to blackleg of crucifers in the seedling stage. In Eucarpia Cruciferae conference on the Breeding of Cruciferous Crops, Wageningen, Netherlands, 1979 (pp. 164–170). Foundation for Agricultural Plant Breeding.

  • Woo, H. R., Kim, H. J., Nam, H. G., & Lim, P. O. (2013). Plant leaf senescence and death – Regulation by multiple layers of control and implications for aging in general. Journal of Cell Science, 126, 4823–4833.

    CAS  PubMed  Google Scholar 

  • Yen, C. H., & Yang, C. H. (1998). Evidence for programmed cell death during leaf senescence in plants. Plant & Cell Physiology, 39, 922–927.

    CAS  Google Scholar 

  • Zander, M., Patel, D., Wouw, A., Lai, K., Lorenc, M., Campbell, E., et al. (2013). Identifying genetic diversity of avirulence genes in Leptosphaeria maculans using whole genome sequencing. Functional & Integrative Genomics, 13, 295–308.

    CAS  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges a Scholarship from The University of Western Australia (Scholarship for International Research Fees and Ad Hoc Postgraduate Scholarship). We are grateful to the financial assistance of the School of Biological Sciences, University of Western Australia. The authors are also grateful to Robert Creasy and Bill Piasini in the UWA Plant Growth Facilities for their technical assistance in plant growth facilities at UWA. In addition, the authors would like to thank Ting Xiang Neik for preparing the inoculum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Batley.

Ethics declarations

Ethical statement

This research did not involve any animal and/or human participants.

Conflict of interest

All authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolatabadian, A., Batley, J., Edwards, D. et al. Virulence/avirulence patterns among Leptosphaeria maculans isolates determines expression of resistance, senescence and yellowing in cotyledons of Brassica napus. Eur J Plant Pathol 156, 1077–1089 (2020). https://doi.org/10.1007/s10658-020-01963-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-01963-5

Keywords

Navigation