Skip to main content
Log in

Novel specific primers for rapid identification of Macrophomina species

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Macrophomina is a widely distributed genus of phytopathogenic fungi with a wide range of plant hosts. The present study aimed to design specific primers for the rapid identification/detection of three Macrophomina species (M. phaseolina, M. pseudophaseolina, and M. euphorbiicola). The reference sequences of four nuclear genes actin (ACT), β-tubulin (βT), calmodulin (CAL) and translation elongation factor 1-alpha (TEF1-α) of each Macrophomina species were submitted for the generation of specific primers using automated software packages. The better specific primers set generated for detection of each species were selected and synthesized. Polymerase chain reaction (PCR)-based assays were conducted to verify the specificity with isolates of the three species of Macrophomina and 42 species of other genera. Three primer sets to amplify of regions CAL (MpCalF/MpCalR, MsCalF/MsCalR and MeCalF/MeCalR) and three primer sets to amplify of regions TEF-1α (MpTefF/MpTefR, MsTefF/MsTefR and MeTefF/MeTefR) were designed for M. phaseolina, M. pseudophaseolina, and M. euphorbiicola, respectively. The specific primers MpCalF/MpCalR from region CAL amplified only the isolates of M. phaseolina. However, the MsCalF/MsCalR and MeCalF/MeCalR amplified non-target isolates. The specific primers MpTefF/MpTefR, MsTefF/MsTefR, MeTefF/MeTefR from region TEF-1α, exhibited high specificity in amplifying only the target isolates. No fragment was detected from other fungal species tested, confirming high specificity of these primers. This is the first report to develop specific primers for the identification of M. phaseolina, M. pseudophaseolina, and M. euphorbiicola. The present study reveals that the primer sets can be used for molecular identification and will facilitate a large­scale survey of the distribution of species and monitoring the epidemics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Babu, B. K., Saxena, A. K., Srivastava, A. K., & Arora, D. K. (2007). Identification and detection of Macrophomina phaseolina by using species-specific oligonucleotide primers and probe. Mycologia, 99, 797–803.

    Article  CAS  Google Scholar 

  • Boonham, N., Tomlinson, J., & Mumford, R. (2016). Molecular methods in plant disease diagnostics. Wallingford: CABI.

    Book  Google Scholar 

  • Crous, P. W., Slippers, B., Wingfild, M. J., Rheeder, J., Marasas, W. F. O., Philips, A. J. L., Alves, A., Burgess, T., Barber, P., & Groenewald, J. Z. (2006). Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology, 55, 235–253.

    Article  Google Scholar 

  • Dhingra, O. D., & Sinclair, J. B. (1978). Biology and pathology of Macrophomina phaseolina. Viçosa: Universidade Federal de Viçosa.

    Google Scholar 

  • Fan, X., Zhang, J., Yang, L., Wu, M., Chen, W., & Li, G. (2015). Development of PCR-based assays for detecting and differentiating three species of Botrytis infecting broad bean. Plant Disease, 99, 691–698.

    Article  CAS  Google Scholar 

  • Farr, D. F., & Rossman, A. Y. (2019). Fungal databases: fungus-host distributions. http://nt.ars-grin.gov/fungaldatabases. Accessed on 30 April 2019.

  • Hung, J. H., & Weng, Z (2016). Designing polymerase chain reaction primers using Primer3Plus. Cold Spring Harbor Protocol, 9, https://doi.org/10.1101/pdb.prot093096.

  • Hyde, K. D., Nilsson, R. H., Alias, S. A., Ariyawansa, H. A., Blair, J. E., et al. (2014). One stop shop: Backbones trees for important phytopathogenic genera: I (2014). Fungal Diversity, 67, 21–125.

    Article  Google Scholar 

  • Irimia, M., & Roy, S. W. (2008). Spliceosomal introns as tools for genomic and evolutionary analysis. Nucleic Acids Research, 36, 1703–1712.

    Article  CAS  Google Scholar 

  • Kumar, A., & Chordia, N. (2015). In silico PCR primer designing and validation. In C. Basu (Ed.), PCR primer design (2nd ed., pp. 143–151). New York: Springer.

    Chapter  Google Scholar 

  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., Mcgettigan, P. A., Mcwilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.

    Article  CAS  Google Scholar 

  • Machado, A. R., Pinho, D. B., Soares, D. J., Gomes, A. A. M., & Pereira, O. L. (2019). Bayesian analyses of five gene regions reveal a new phylogenetic species of Macrophomina associated with charcoal rot on oilseed crops in Brazil. European Journal of Plant Pathology, 153, 89–100.

    Article  Google Scholar 

  • Ni, H. F., Yang, H. R., Chen, R. S., Hung, T. H., & Liou, R. F. (2012). A nested multiplex PCR for species-specific identification and detection of Botryosphaeriaceae species on mango. European Journal Plant Pathology, 133, 819–828.

    Article  CAS  Google Scholar 

  • Phillips, A. J. L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfild, M. J., Groenewald, J. Z., & Crous, P. W. (2013). The Botryosphaeriaceae: Genera and species known from culture. Studies in Mycology, 76, 51–167.

    Article  CAS  Google Scholar 

  • Sarr, M. P., Diaye, M. N., Groenewald, J. Z., & Crous, P. (2014). Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. Phytopathologia Mediterranea, 53, 250–268.

    Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego, California, USA: Academic Press.

    Google Scholar 

  • Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13, 134.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) for a doctorate scholarship. A. R. Machado and K. C. Correia acknowledge the CNPq for financial support. S. J. Michereff also acknowledges the CNPq research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Jorge Michereff.

Ethics declarations

All principles of ethical and professional conduct have been followed during this research and elaboration of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving Human Participants and/or Animals

Not applicable.

Informed consent

All authors have reviewed the manuscript and approved its submission to the European Journal of Plant Pathology.

Electronic supplementary material

Supplementary Table 1

(DOCX 15.4 kb)

Supplementary Table 2

(DOCX 17.2 kb)

Supplementary Table 3

(DOCX 14.5 kb)

Supplementary Fig. 1

Detection of Macrophomina phaseolina, M. pseudophaseolina and M. euphorbiicola using the primer sets MpCalF/MpCalR, MsCalF/MsCalR and MeCalF/MeCalR, respectively. Lane M: DNA marker; lanes 2 to 6: M. phaseolina (MP) isolates CMM-2748, CMM-3540, CMM-3615, CMM-4048 and CMM-4149, respectively; lanes 7 to 11: M. pseudophaseolina (MS) isolates CMM-4029, CMM-4131, CMM-4155, CMM-4161, CMM-4231, respectively; lanes 12 to 16: M. euphorbiicola (ME) isolates CMM-2158, CMM-2718, CMM-4045, CMM-4134 and CMM-4145, respectively (PNG 938 kb)

High resolution image (TIF 796 kb)

Supplementary Fig. 2

Detection of Macrophomina phaseolina, M. pseudophaseolina and M. euphorbiicola using the primer sets MpTefF/MpTefR, MsTefF/MsTefR and MeTefF/MeTefR, respectively. Lane M: DNA marker; lanes 2 to 6: M. phaseolina (MP) isolates CMM-2748, CMM-3540, CMM-3615, CMM-4048 and CMM-4149, respectively; lanes 7 to 11: M. pseudophaseolina (MS) isolates CMM-4029, CMM-4131, CMM-4155, CMM-4161, CMM-4231, respectively; lanes 12 to 16: M. euphorbiicola (ME) isolates CMM-2158, CMM-2718, CMM-4045, CMM-4134 and CMM-4145, respectively (PNG 454 kb)

High resolution image (TIF 510 kb)

Supplementary Fig. 3

Evaluation of the specificity of the primer sets MpTefF/MpTefR, MsTefF/MsTefR and MeTefF/MeTefR in PCR assays using forty-two fungal isolates of the different genera (negative control). Lanes 1 to 42 Isolates in Table S3. Mp: M. phaseolina; Ms.: M. pseudophoseolina; Me: M. euphorbiicola (PNG 435 kb)

High resolution image (TIF 656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, K.M., Lima, G.S., Barros, A.P.O. et al. Novel specific primers for rapid identification of Macrophomina species. Eur J Plant Pathol 156, 1213–1218 (2020). https://doi.org/10.1007/s10658-020-01952-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-01952-8

Keywords

Navigation