Skip to main content

Advertisement

Log in

Dissecting molecular events and gene expression signatures involved in Colletotrichum lindemuthianum-Phaseolus vulgaris pathosystem in compatible and incompatible interactions

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

A Correction to this article was published on 25 February 2020

This article has been updated

Abstract

Colletotrichum lindemuthianum, causal agent of bean anthracnose is one of the most destructive fungal bean diseases that potentially have an enormous economic impact on bean cultivation worldwide. To obtain novel insights into how bean regulates its defense pathways to react efficiently against this invading pathogen, cvs Khomein and Naz representing contrasting interactions were investigated by histochemical and real-time quantitative RT-PCR (RT-qPCR) approaches. Our histochemical analysis conducted at 24, 48, 72 and 96 h post inoculation (hpi) demonstrated that hydrogen peroxide (H2O2) may have a bifunctional role in establishing the incompatibility and compatibility. This free radical (H2O2) can, therefore, be elevated at an early stage (24 hpi) of the incompatible context to arrest fungal growth, whereas H2O2 was promoted at the late stage (72 hpi) of the compatible context to facilitate the infection process. Additionally, we demonstrated that O2 probably plays an essential function in launching the resistance response since O2 increased significantly at 36 hpi in incompatible interaction compared with that of the compatible interface. Our expression analysis showed that the expression of six defense-related genes are differentially regulated regarding the types of interactions, shedding light on how the beans adaptively regulate defense pathways. This study contributes to a better understanding of the kinetics of reactions triggered following C. lindemuthianum infection and may be applied to develop novel strategies to manage bean anthracnose effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  • Asselbergh, B., De Vleesschauwer, D., & Höfte, M. (2008). Global switches and fine-tuning—ABA modulates plant pathogen defense. Molecular Plant-Microbe Interactions, 21(6), 709–719.

    CAS  PubMed  Google Scholar 

  • Atghia, O., Javan-Nikkhah, M., Fotouhifar, K. B., & Alizadeh, A. (2016). Physiological races of Colletotrichum lindemuthianum, the causal agent of common bean anthracnose. Paper presented at the 22nd Iranian plant protection congress, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

  • Avanci, N., Luche, D., Goldman, G., & Goldman, M. (2010). Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genetics and Molecular Research, 9(1), 484–505.

    CAS  PubMed  Google Scholar 

  • Balasubramanian, V., Vashisht, D., Cletus, J., & Sakthivel, N. (2012). Plant β-1, 3-glucanases: Their biological functions and transgenic expression against phytopathogenic fungi. Biotechnology Letters, 34(11), 1983–1990.

    CAS  PubMed  Google Scholar 

  • Bell, J., Ryder, T., Wingate, V., Bailey, J., & Lamb, C. (1986). Differential accumulation of plant defense gene transcripts in a compatible and an incompatible plant-pathogen interaction. Molecular and Cellular Biology, 6(5), 1615–1623.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borges, A., Melotto, M., Tsai, S. M., & Caldas, D. G. G. (2012). Changes in spatial and temporal gene expression during incompatible interaction between common bean and anthracnose pathogen. Journal of Plant Physiology, 169(12), 1216–1220.

    CAS  PubMed  Google Scholar 

  • Breen, S., Williams, S. J., Outram, M., Kobe, B., & Solomon, P. S. (2017). Emerging insights into the functions of pathogenesis-related protein 1. Trends in Plant Science, 22(10), 871–879.

    CAS  PubMed  Google Scholar 

  • Cao, F. Y., Yoshioka, K., & Desveaux, D. (2011). The roles of ABA in plant–pathogen interactions. Journal of Plant Research, 124(4), 489–499.

    CAS  PubMed  Google Scholar 

  • Cook, D. E., Mesarich, C. H., & Thomma, B. P. (2015). Understanding plant immunity as a surveillance system to detect invasion. Annual Review of Phytopathology, 53, 541–563.

    CAS  PubMed  Google Scholar 

  • Costa, L. C., Nalin, R. S., Ramalho, M. A. P., & de Souza, E. A. (2017). Are duplicated genes responsible for anthracnose resistance in common bean? PLoS One, 12(3), e0173789.

    PubMed  PubMed Central  Google Scholar 

  • Cregeen, S., Radisek, S., Mandelc, S., Turk, B., Stajner, N., Jakse, J., & Javornik, B. (2015). Different gene expressions of resistant and susceptible hop cultivars in response to infection with a highly aggressive strain of Verticillium albo-atrum. Plant Molecular Biology Reporter, 33(3), 689–704.

    CAS  PubMed  Google Scholar 

  • de Freitas, M. B., & Stadnik, M. J. (2012). Race-specific and ulvan-induced defense responses in bean (Phaseolus vulgaris) against Colletotrichum lindemuthianum. Physiological and Molecular Plant Pathology, 78, 8–13.

    Google Scholar 

  • de Queiroz, C. B., Correia, H. L. N., Menicucci, R. P., Vidigal, P. M. P., & de Queiroz, M. V. (2017). Draft genome sequences of two isolates of Colletotrichum lindemuthianum, the causal agent of anthracnose in common beans. Genome Announcements, 5(18), e00214–e00217.

    PubMed  PubMed Central  Google Scholar 

  • de Queiroz, C. B., Correia, H. L. N., Santana, M. F., Batista, D. S., Vidigal, P. M. P., Brommonschenkel, S. H., & de Queiroz, M. V. (2019). The repertoire of effector candidates in Colletotrichum lindemuthianum reveals important information about Colletotrichum genus lifestyle. Applied Microbiology and Biotechnology, 1-15.

  • Dixon, R. A., & Harrison, M. J. (1990). Activation, structure, and organization of genes involved in microbial defense in plants. Advances in Genetic, 28, 165–234.

    CAS  Google Scholar 

  • Dixon, R. A., Achnine, L., Kota, P., Liu, C. J., Reddy, M. S., & Wang, L. (2002). The phenylpropanoid pathway and plant defence—A genomics perspective. Molecular Plant Pathology, 3(5), 371–390.

    CAS  PubMed  Google Scholar 

  • Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: Towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539–548.

    CAS  PubMed  Google Scholar 

  • Doke, N. (1983). Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiological Plant Pathology, 23(3), 359–367.

    CAS  Google Scholar 

  • Dufresne, M., Perfect, S., Pellier, A. L., Bailey, J. A., & Langin, T. (2000). A GAL4-like protein is involved in the switch between biotrophic and necrotrophic phases of the infection process of Colletotrichum lindemuthianum on common bean. The Plant Cell, 12(9), 1579–1589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq, M., Padder, B. A., Bhat, N. N., Shah, M., Shikari, A. B., Awale, H. E., et al. (2019). Temporal expression of candidate genes at the co-1 locus and their interaction with other defense related genes in common bean. Physiological and Molecular Plant Pathology, 108, 101424.

    Google Scholar 

  • Ferreira, R. B., Monteiro, S., Freitas, R., Santos, C. N., Chen, Z., Batista, L. M., et al. (2007). The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology, 8(5), 677–700.

    CAS  PubMed  Google Scholar 

  • Ferreira, J. J., Campa, A., & Kelly, J. D. (2013). Organization of genes conferring resistance to anthracnose in common bean. In R. K. Varshney & R. Tuberosa (Eds.), Translational genomics for crop breeding: Biotic stress (pp. 151–176). New York: John Wiley & Sons.

    Google Scholar 

  • Feussner, I., & Wasternack, C. (2002). The lipoxygenase pathway. Annual Review of Plant Biology, 53(1), 275–297.

    CAS  PubMed  Google Scholar 

  • Fraire-Velázquez, S., & Lozoya-Gloria, E. (2003). Differential early gene expression in Phaseolus vulgaris to Mexican isolates of Colletotrichum lindemuthianum in incompatible and compatible interactions. Physiological and Molecular Plant Pathology, 63(2), 79–89.

    Google Scholar 

  • Gepts, P., Aragão, F. J., De Barros, E., Blair, M. W., Brondani, R., Broughton, W., et al. (2008). Genomics of Phaseolus beans, a major source of dietary protein and micronutrients in the tropics. Genomics of Tropical Crop Plants (pp. 113-143). Springer.

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    CAS  PubMed  Google Scholar 

  • González, A. M., Yuste-Lisbona, F. J., Rodiño, A. P., De Ron, A. M., Capel, C., García-Alcázar, M., et al. (2015). Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean. Frontiers in Plant Science, 6, 141.

    PubMed  PubMed Central  Google Scholar 

  • Govrin, E. M., & Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10(13), 751–757.

    CAS  PubMed  Google Scholar 

  • Grellet Bournonville, C. F., & Díaz-Ricci, J. C. (2011). Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochemical Analysis, 22(3), 268–271.

    CAS  Google Scholar 

  • Guerreiro, A., Figueiredo, J., Sousa Silva, M., & Figueiredo, A. (2016). Linking jasmonic acid to grapevine resistance against the biotrophic oomycete Plasmopara viticola. Frontiers in Plant Science, 7, 565.

    PubMed  PubMed Central  Google Scholar 

  • Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hückelhoven, R., Fodor, J., Preis, C., & Kogel, K.-H. (1999). Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiology, 119(4), 1251–1260.

    PubMed  PubMed Central  Google Scholar 

  • Jiménez-Quesada, M. J., Traverso, J. Á., & Alché, J. D. D. (2016). NADPH oxidase-dependent superoxide production in plant reproductive tissues. Frontiers in Plant Science, 7, 359.

    PubMed  PubMed Central  Google Scholar 

  • Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329.

    CAS  Google Scholar 

  • Kelly, J. D., & Vallejo, V. A. (2004). A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience, 39(6), 1196–1207.

    CAS  Google Scholar 

  • Kim, D. S., & Hwang, B. K. (2014). An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. Journal of Experimental Botany, 65(9), 2295–2306.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahé, A., Grisvard, J., Desnos, T., & Dron, M. (1992). Bean-Colletotrichum lindemuthianum compatible interactions: Time course of plant defense responses depends on race. Molecular Plant-Microbe Interactions, 6, 472–478.

    Google Scholar 

  • Mahe, A., Grisvard, J., & Dron, M. (1993). Two a-virulent races of Colletotrichum lindemuthianum trigger different time courses of plant defense reactions in bean. Molecular Plant-Microbe Interactions, 6, 423–423.

    Google Scholar 

  • Mahuku, G. S., & Riascos, J. J. (2004). Virulence and molecular diversity within Colletotrichum lindemuthianum isolates from Andean and Mesoamerican bean varieties and regions. European Journal of Plant Pathology, 110(3), 253–263.

    CAS  Google Scholar 

  • Mandelc, S., Timperman, I., Radišek, S., Devreese, B., Samyn, B., & Javornik, B. (2013). Comparative proteomic profiling in compatible and incompatible interactions between hop roots and Verticillium albo-atrum. Plant Physiology and Biochemistry, 68, 23–31.

    CAS  PubMed  Google Scholar 

  • Mert-Türk, F. (2002). Phytoalexins: Defence or just a response to stress. Journal of Cell & Molecular Biology, 1, 1–6.

    Google Scholar 

  • Murube, E., Campa, A., & Ferreira, J. J. (2019). Integrating genetic and physical positions of the anthracnose resistance genes described in bean chromosomes Pv01 and Pv04. PLoS One, 14(2), e0212298.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connell, R. J., & Bailey, J. A. (1991). Hemibiotrophy in Colletotrichum lindemuthianum. Electron Microscopy of Plant Pathogens (pp. 211-222). Springer.

  • Oblessuc, P. R., Borges, A., Chowdhury, B., Caldas, D. G. G., Tsai, S. M., Camargo, L. E. A., et al. (2012). Dissecting Phaseolus vulgaris innate immune system against Colletotrichum lindemuthianum infection. PLoS One, 7(8), e43161.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Connell, R., & Bailey, J. (1988). Differences in the extent of fungal development, host cell necrosis and symptom expression during race-cultivar interactions between Phaseolus vulgaris and Colletotrichum lindemuthianum. Plant Pathology., 3, 351–362.

    Google Scholar 

  • O'Connell, R., Bailey, J., & Richmond, D. (1985). Cytology and physiology of infection of Phaseolus vulgaris by Colletotrichum lindemuthianum. Physiological Plant Pathology, 27(1), 75–98.

    Google Scholar 

  • Padder, B., Sharma, P., Sharma, O., & Kapoor, V. (2007). Genetic diversity and gene flow estimates among five populations of Colletotrichum lindemuthianum across Himachal Pradesh. Physiological and Molecular Plant Pathology, 70(1–3), 8–12.

    CAS  Google Scholar 

  • Padder, B. A., Kamfwa, K., Awale, H. E., & Kelly, J. D. (2016). Transcriptome profiling of the Phaseolus vulgaris-Colletotrichum lindemuthianum pathosystem. PLoS One, 11(11), e0165823.

    PubMed  PubMed Central  Google Scholar 

  • Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5(5), 308–316.

    CAS  PubMed  Google Scholar 

  • Pietrowska, E., Różalska, S., Kaźmierczak, A., Nawrocka, J., & Małolepsza, U. (2015). Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures—Botrytis cinerea interaction. Protoplasma, 252(1), 307–319.

    CAS  PubMed  Google Scholar 

  • Pinto, J., Pereira, R., Mota, S., Ishikawa, F., & Souza, E. (2012). Investigating phenotypic variability in Colletotrichum lindemuthianum populations. Phytopathology, 102(5), 490–497.

    CAS  PubMed  Google Scholar 

  • Porta, H., & Rocha-Sosa, M. (2002). Plant lipoxygenases. Physiological and molecular features. Plant Physiology, 130(1), 15–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, J., Wang, J., Gong, Z., & Zhou, J. M. (2017). Apoplastic ROS signaling in plant immunity. Current Opinion in Plant Biology, 38, 92–100.

    CAS  PubMed  Google Scholar 

  • Qin, X., & Zeevaart, J. A. (1999). The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proceedings of the National Academy of Sciences, 96(26), 15354–15361.

    CAS  Google Scholar 

  • Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–2308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682.

    CAS  PubMed  Google Scholar 

  • Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108.

    CAS  PubMed  Google Scholar 

  • Sharma, P., Padder, B., Sharma, O., Pathania, A., & Sharma, P. (2007). Pathological and molecular diversity in Colletotrichum lindemuthianum (bean anthracnose) across Himachal Pradesh, a north-western Himalayan state of India. Australasian Plant Pathology, 36(2), 191–197.

    CAS  Google Scholar 

  • Sharma, P., Sharma, O., Padder, B., & Kapil, R. (2008). Yield loss assessment in common bean due to anthracnose (Colletotrichum lindemuthianum) under sub temperate conditions of North-Western Himalayas. Indian Phytopathology, 61(3), 323.

    Google Scholar 

  • Sharma, N., Kumari, N., Sharma, S. K., Padder, B. A., & Sharma, P. N. (2019). Investigating the virulence and genetic diversity of Colletotrichum lindemuthianum populations distributed in the North Western Himalayan hill states. Journal of Plant Pathology, 101(3), 677–688.

    Google Scholar 

  • Silvar, C., Merino, F., & Díaz, J. (2008). Differential activation of defense-related genes in susceptible and resistant pepper cultivars infected with Phytophthora capsici. Journal of Plant Physiology, 165(10), 1120–1124.

    CAS  PubMed  Google Scholar 

  • Silvar, C., Merino, F., & Díaz, J. (2009). Resistance in pepper plants induced by Fusarium oxysporum f. sp. lycopersici involves different defence-related genes. Plant Biology, 11(1), 68–74.

    CAS  PubMed  Google Scholar 

  • Stergiopoulos, I., & de Wit, P. J. (2009). Fungal effector proteins. Annual Review of Phytopathology, 47, 233–263.

    CAS  PubMed  Google Scholar 

  • Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., et al. (1993). Plant ‘pathogenesis-related’proteins and their role in defense against pathogens. Biochimie, 75(8), 687–706.

    CAS  PubMed  Google Scholar 

  • Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—Powdery mildew interaction. The Plant Journal, 11(6), 1187–1194.

    CAS  Google Scholar 

  • Ton, J., Flors, V., & Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends in Plant Science, 14(6), 310–317.

    CAS  PubMed  Google Scholar 

  • Tsuda, K., & Katagiri, F. (2010). Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology, 13(4), 459–465.

    CAS  PubMed  Google Scholar 

  • Veneault-Fourrey, C., Laugé, R., & Langin, T. (2005). Nonpathogenic strains of Colletotrichum lindemuthianum trigger progressive bean defense responses during appressorium-mediated penetration. Applied and Environmental Microbiology, 71(8), 4761–4770.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuiderveen, G. H., Padder, B. A., Kamfwa, K., Song, Q., & Kelly, J. D. (2016). Genome-wide association study of anthracnose resistance in Andean beans (Phaseolus vulgaris). PLoS One, 11(6), e0156391.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the University of Tehran for supporting the current study and providing the required facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mirzadi Gohari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest for the submitted manuscript, and this research does not involve Human Participants and/or Animal. In addition, all author agreed about this submitting.

Electronic supplementary material

ESM 1

(DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, E., Javan-Nikkhah, M. & Mirzadi Gohari, A. Dissecting molecular events and gene expression signatures involved in Colletotrichum lindemuthianum-Phaseolus vulgaris pathosystem in compatible and incompatible interactions. Eur J Plant Pathol 156, 925–937 (2020). https://doi.org/10.1007/s10658-020-01944-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-01944-8

Keywords

Navigation