Skip to main content

Advertisement

Log in

Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The capacity of arbuscular mycorrhizal fungi (AMF) to alleviate the negative effects incited by root pathogens in a range of plant hosts has been established. On the other hand, accumulated evidence also shows that fertilization practices can negatively impact AMF. Nevertheless, the interaction between AMF, pathogens and fertilizers, especially nitrogen (N) fertilizers, has not been previously reported. In this work, the effect of nitrogen on both the severity of the pathogen Macrophomina phaseolina (charcoal root rot) and the protection by the arbuscular mycorrhiza fungi (AMF) Rhizophagus intraradices was investigated in greenhouse experiments using soybean (Glycine max) as a host. The treatments were two levels of N (0 and 92 kg of urea ha−1), inoculation and non-inoculation with the AMF, and infection and non-infection with the pathogen. Soybean was harvested at R4 phenological stage (completed pod formation). Plant biomass, numbers of pods and leaves, plant height, root length, greenness index, mycorrhizal colonization and disease severity were measured. Pathogen infection reduced soybean biomass and negatively affected the greenness index, but co-inoculation with AMF improved these parameters. Nitrogen fertilization reduced AMF colonization but not arbuscules percentage. N fertilization increased disease severity but mycorrhizal symbiosis was able to reduce it. These results demonstrate that severity of charcoal root-rot disease in N fertilized soybean can be reduced by AMF inoculation. The implication of these results is that N fertilization could increase the risk of diseases in soybean but mycorrhiza could contribute to soybean charcoal root rot control even if the crop is under N fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhtar, M. S., & Siddiqui, Z. A. (2008). Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Protection, 27, 410–417.

    Google Scholar 

  • Al-Askar, A. A., Ghoneem, K. M., Rashad, Y. M., Abdulkhair, W. M., Hafez, E. E., Shabana, Y. M., & Baka, Z. A. (2014). Occurrence and distribution of tomato seed-borne mycoflora in Saudi Arabia and its correlation with the climatic variables. Microbial Biotechnology, 7, 556–569.

    PubMed  PubMed Central  Google Scholar 

  • Alguacil, M. M., Lumini, E., Roldan, A., Salinas-Garcia, J. R., Bonfante, P., & Bianciotto, V. (2008). The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecological Applications, 18, 527–536.

    CAS  PubMed  Google Scholar 

  • Balzarini, M. G., González, L., Tablada, M., Casanoves, F., Di Rienzo, J. A., & Robledo, C. W. (2008). InfoStat: Software Estadístico: Manual del Usuario. Córdoba: Editorial Brujas.

    Google Scholar 

  • Berg, G., Grosch, R., & Scherwinski, K. (2007). Risk assessment for microbial antagonists: Are there effects on non-target organisms? Gesunde Pflanzen, 59, 107–117.

    CAS  Google Scholar 

  • Blanke, V., Wagner, M., Renker, C., Lippert, H., Michulitz, M., Kuhn, A. J., & Buscot, F. (2011). Arbuscular mycorrhizas in phosphatepolluted soil: Interrelations between root colonization and nitrogen. Plant and Soil, 343, 379–392.

    CAS  Google Scholar 

  • Chamorro, M., Miranda, L., Domínguez, P., Medina, J. J., Soria, C., Romero, F., López-Aranda, J. M., & De los Santos, B. (2015). Evaluation of biosolarization for the control of charcoal rot disease (Macrophomina phaseolina) in strawberry. Crop Protection, 67, 279–286.

    Google Scholar 

  • Contreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E., & Larsen, J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, 92, fiw036.

    PubMed  Google Scholar 

  • Cordier, C., Pozo, M. J., Barea, J. M., Gianinazzi, S., & Gianinazzi-Pearson, V. (1998). Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Molecular Plant-Microbe Interactions, 11, 1017–1028.

    CAS  Google Scholar 

  • Cornejo, P., Rubio, R., & Borie, F. (2008). Effect of nitrogen source on some rhizospheric properties and persistence of mycorrhizal fungal propagules in an Andisol. Chilean Journal of Agricultural Research, 68, 119–127.

    Google Scholar 

  • Cornejo, P., Rubio, R., & Borie, F. (2009). Mycorrhizal propagule persistence in a succession of cereals in a disturbed and undisturbed andisol fertilized with two nitrogen sources. Chilean Journal of Agricultural Research, 69, 426–434.

    Google Scholar 

  • Doley, K., & Jite, P. K. (2012). Effect of arbuscular mycorrhizal fungi on growth of groundnut and disease caused by Macrophomina phaseolina. Journal of Experimental Sciences, 4, 11–15.

    Google Scholar 

  • Drinkwater, L. E., Letourneau, D. K., Workneh, F., van Bruggen, A. H. C., & Shennan, C. (1995). Fundamental differences between conventional and organic tomato agroecosystems in California. Ecological Applications, 5, 1098–1112.

    Google Scholar 

  • Eke, P., Chatue, G. C., Wakam, L. N., Kouipou, R. M. T., Fokou, P. V. T., & Boyom, F. F. (2016). Mycorrhiza consortia suppress the fusarium root rot (Fusarium solani f. sp. Phaseoli) in common bean (Phaseolus vulgaris L.). Biological Control, 103, 240–250.

    Google Scholar 

  • Farr, D. F., & Rossman, A.Y. (2019). Fungal Databases, U.S. National Fungus Collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/.

  • Fehr, W. R. & Caviness, C. E. (1977). Stages of soybean development. Iowa State University, Agricultural and Home EconomicsExperiment Station, Ames, IA, USA.

  • Filho, J. A. C., Pascholati, S. F., & Sabrinho, R. R. (2016). Mycorrhizal association and their role in plant disease protection. In K. R. Hakeem & M. S. Akhtar (Eds.), Plant, soil and microbes (pp. 95–143). Basel: Springer.

    Google Scholar 

  • Gai, Z., Zhang, J., & Li, C. (2017). Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield. PLoS One, 12(4), e0174841.

    PubMed  PubMed Central  Google Scholar 

  • Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46, 235–244.

    Google Scholar 

  • Gianquinto, G., Goffart, J. P., Olivier, M., Guarda, G., Colauzzi, M., Dalla Costa, L., Delle Vedove, G., Vos, J., & Mackerron, D. K. L. (2004). The use of handheld chlorophyll meters as a tool to assess the nitrogen status and to guide nitrogen fertilization of potato crop. Potato Research, 47, 35–80.

    Google Scholar 

  • Gutiérrez-Boem, F. H., Scheiner, J. D., Rimski-Korsakov, H., & Lavado, R. S. (2004). Late season nitrogen fertilization of soybeans: Effects on leaf senescence, yield and environment. Nutrient Cycling in Agroecosystems, 68, 109–115.

    Google Scholar 

  • Harrier, L. A., & Watson, C. A. (2004). The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Management Science, 60, 149–157.

    CAS  PubMed  Google Scholar 

  • Hart, M. M., & Reader, R. J. (2002). Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist, 153, 335–344.

    Google Scholar 

  • Huber, D. M., & Haneklaus, S. (2007). Managing nutrition to control plant disease. Landbauforschung Volkenrode, 57, 313–322.

    CAS  Google Scholar 

  • Johnson, N. C., Rowland, D. L., Corkidi, L., Egerton-Warburton, L. M., & Allen, E. B. (2003). Nitrogen enrichment alters mycorrhizal allocation at five Mesic to semiarid grasslands. Ecology, 84, 1895–1908.

    Google Scholar 

  • La Menza, N. C., Monzon, J. P., Specht, J. E., & Grassini, P. (2017). Is soybean yield limited by nitrogen supply? Field Crops Research, 213, 204–212.

    Google Scholar 

  • Lecompte, F., Abro, M. A., & Nicot, P. C. (2010). Contrasted responses of Botrytis cinerea isolates developing on tomato plants grown under different nitrogen nutrition regimes. Plant Pathology, 59, 891–899.

    CAS  Google Scholar 

  • Lemmens, M., Haim, K., Lew, H., & Ruckenbauer, P. (2004). The effect of nitrogen fertilization on Fusarium head blight development and deoxynivalenol contamination in wheat. Journal of Phytopathology, 152, 1–8.

    Google Scholar 

  • Liu, Y. J., Shi, G. X., Mao, L., Cheng, G., Jiang, S. J., Ma, X., An, L., Du, G., Collins Johnson, N., & Feng, H. (2012). Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 194, 523–535.

    CAS  PubMed  Google Scholar 

  • Mahmood, R., & Bashir, U. (2011). Relationship between soil physicochemical characteristics and soil-borne diseases. Mycopathology, 9, 87–93.

    Google Scholar 

  • Majewska, M. L., Rola, K., & Zubek, S. (2017). The growth and phosphorus acquisition of invasive plants Rudbeckia laciniata and Solidago gigantea are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza, 27, 83–94.

    CAS  PubMed  Google Scholar 

  • Malbreil, M., Tisserant, E., Martin, F., & Roux, C. (2014). Genomics of arbuscular mycorrhizal fungi: Out of the shadows. In Advances in botanical research. San Diego, Academic Press, 70, 259–290.

  • Marschner, H. (1986). Mineral nutrition of higher plants. San Diego: Academic Press.

    Google Scholar 

  • McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., & Swan, J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115, 495–501.

    Google Scholar 

  • Mengistu, A., Ray, J. D., Smith, J. R., & Paris, R. L. (2007). Charcoal rot disease assessment of soybean genotypes using a colony-forming unit index. Crop Science, 47, 2453–2461.

    Google Scholar 

  • Olawuyi, O. J., Odebode, A. C., Olakojo, S. A., Popoola, O. O., Akanmu, A. O., & Izenigu, J. O. (2014). Host pathogen interaction of maize (Zea mays L.) and Aspergillus niger as influenced by mycorrhizal fungi (Glomus deserticola). Archives of Agronomy and Soil Science, 60, 1577–1591.

    Google Scholar 

  • Pascual, J. A. (2016). The use of Arbuscular Mycorrhizal Fungi in combination with Trichoderma spp. in sustainable agriculture. In Bioformulations: For sustainable agriculture (pp. 137–146). India: Springer.

    Google Scholar 

  • Persson, L., Bodker, L., & Larsson-Wikstrom, M. (1997). Prevalence and pathogenicity of foot and root rot pathogen of pea in southern Scandeinavia. Plant Disease, 81, 171–174.

    CAS  PubMed  Google Scholar 

  • Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscularmycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158–161.

    Google Scholar 

  • Romero Luna, M. P., Mueller, D., Mengistu, A., Singh, A. K., Hartman, G. L., & Wise, K. A. (2017). Advancing our understanding of charcoal rot in soybeans. Journal of Integrated Pest Management, 8(1).

  • Sanchez-Bel, P., Troncho, P., Gamir, J., Pozo, M. J., Camañes, G., Cerezo, M., & Flors, V. (2016). The nitrogen availability interferes with mycorrhiza-induced resistance against Botrytis cinerea in tomato. Frontiers in Microbiology, 7, 1598.

    PubMed  PubMed Central  Google Scholar 

  • Sikes, B. A. (2010). When do arbuscular mycorrhizal fungi protect plant roots from pathogens? Plant Signaling & Behavior, 5, 763–765.

    Google Scholar 

  • Slezack, S., Dumas-Gaudot, E., Paynot, M., & Gianinazzi, S. (2000). Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches? Molecular Plant-Microbe Interactions, 13, 238–241.

    CAS  PubMed  Google Scholar 

  • Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis. Cambridge: Academic press.

    Google Scholar 

  • Spagnoletti, F. N., Balestrasse, K., Lavado, R. S., & Giacometti, R. (2016). Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotoxicology and Environmental Safety, 133, 47–56.

    CAS  PubMed  Google Scholar 

  • Spagnoletti, F., Carmona, M., Gómez, N. E. T., Chiocchio, V., & Lavado, R. S. (2017). Arbuscular mycorrhiza reduces the negative effects of M. phaseolina on soybean plants in arsenic-contaminated soils. Applied Soil Ecology, 121, 41–47.

    Google Scholar 

  • Spagnoletti, F. N., Leiva, M., Chiocchio, V., & Lavado, R. S. (2018). Phosphorus fertilization reduces the severity of charcoal rot (Macrophomina phaseolina) and the arbuscular mycorrhizal protection in soybean. Journal of Plant Nutrition and Soil Science, 181, 855–860.

    CAS  Google Scholar 

  • Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnson, C. T., & Sumner, M. E. (1996). Methods of soil analysis, part 3, chemical methods. Madison: ASA SSSA.

    Google Scholar 

  • Sumida, C. H., Daniel, J. F., Araujod, A. P. C., Peitl, D. C., Abreu, L. M., Dekker, R. F., & Canteri, M. G. (2018). Trichoderma asperelloides antagonism to nine Sclerotinia sclerotiorum strains and biological control of white mold disease in soybean plants. Biocontrol Science and Technology, 28, 142–156.

    Google Scholar 

  • Tennant, D. (1975). A test of modified line intersect method of estimating root length. Journal of Ecology, 63, 995–1001.

    Google Scholar 

  • Tian, H., Drijber, R. A., Zhang, J. L., & Li, X. L. (2013). Impact of long-term nitrogen fertilization and rotation with soybean on the diversity and phosphorus metabolism of indigenous arbuscular mycorrhizal fungi within the roots of maize (Zea mays L.). Agriculture, Ecosystems & Environment, 164, 53–61.

    CAS  Google Scholar 

  • Veresoglou, S. D., Barto, E. K., Menexes, G., & Rillig, M. C. (2013). Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathology, 62, 961–969.

    Google Scholar 

  • Vicente-Sánchez, J., Nicolás, E., Pedrero, F., Alarcón, J. J., Maestre-Valero, J. F., & Fernández, F. (2014). Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza, 24, 339–348.

    PubMed  Google Scholar 

  • Wehner, J., Antunes, P. M., Powell, J. R., Mazukatow, J., & Rillig, M. C. (2010). Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia, 53, 197–201.

    Google Scholar 

  • Wilhelm, S. (1950). The inoculum potential of Verticillum alboatrum as affected by soil amendments. Phytopathology, 40, 970–974.

    Google Scholar 

  • Williams, F. J. (1965). Antecedent nitrogen sources affecting virulence of Colletotrichum phomoides. Phytopathology, 55, 333–335.

    Google Scholar 

  • Zambolim, L., & Schenck, N. C. (1983). Reduction of the effects of pathogenic, root-infecting fungi on soybean by the mycorrhizal fungus, Glomus mosseae. Phytopathology, 73, 1402–1405.

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Agencia Nacional de Promoción Científica FONCYT (PICT-2857) and the Universidad de Buenos Aires (UBA) (UBACYT 068/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico N. Spagnoletti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All authors consent to this submission.

Electronic supplementary material

ESM 1

(DOCX 14.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spagnoletti, F.N., Cornero, M., Chiocchio, V. et al. Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. Eur J Plant Pathol 156, 839–849 (2020). https://doi.org/10.1007/s10658-020-01934-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-01934-w

Keywords

Navigation