Skip to main content

Advertisement

Log in

Differential proteomics analysis reveals that Azospirillium brasilense (Sp7) promotes virus tolerance in maize and tomato seedlings

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Plant growth-promoting rhizobacteria such as Azospirillum brasilense Sp7 can protect plants against viruses but the molecular basis of this phenomenon is unclear. We therefore used differential proteomics to study two pathosystems in the presence and absence of Sp7 during early vegetative growth: tomato (Solanum lycopersicum L. cv. Boludo)/Potato virus X (PVX, KJ631111)/Sp7, and maize (Zea mays cv. B73)/Maize dwarf mosaic virus (MDMV, AM110558)/Sp7). In the maize/MDMV system, PDQuest revealed significant variations in the levels of 19 proteins compared to uninfected controls, including the upregulation of NADP-dependent malic enzyme as a form of host-specific viral anticipation, causing a simultaneous increase in the abundance of proteins related to photosynthesis and plastid functions. However, 42 proteins varied significantly in the maize/MDMV/Sp7 system, including the upregulation of radical-scavenging enzymes and proteins related to methionine metabolism, the glutathione-ascorbate cycle and photosynthesis, increasing the photosynthetic rate. In the tomato/PVX system, we observed significant variations in the levels of 58 proteins reflecting the disruption of the Calvin-Benson cycle, responses to oxidative stress and the inhibition of photosystem II (PSII) activity. We identified 26 proteins that varied in the tomato/PVX/Sp7 system; PSII and plastid proteins transiently declined but partially recovered over time as the Calvin-Benson cycle was induced to compensate. Sp7 therefore triggers induced systemic resistance in both pathosystems without affecting the virus titer, although it does delay the appearance of MDMV. The role of ribulose-1.5-bisphosphate carboxylase/oxygenase small subunit as a host target for viruses is discussed in both pathosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams, M. J., Accotto, G. P., Agranovsky, A. A., Bar-Joseph, M., Boscia, D., Brunt, A. A., Candresse, T., Coutts, R. H. A., Dolja, V. V., Falk, B. W., Foster, G. D., & Gonsalves, D. (2005). Family Flexiviridae. In C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, & L. A. Ball (Eds.), Virus Taxonomy. 8th Report of the International Committee on Taxonomy of Viruses (pp. 1089–1124). San Diego, USA: Elsevier/Academic Press.

  • Aguilar, E., Almendral, D., Allende, L., Pacheco, R., Chung, B. M., Canto, T., & Tenllado, F. (2015). The P25 protein of Potato Virus X (PVX) is the Main pathogenicity determinant responsible for systemic necrosis in PVX-associated synergisms. Journal of Virology, 89(4), 2090–2103.

    PubMed  Google Scholar 

  • Al-Ani, R. A., Adhab, M. A., El-Muadhidi, M. A., & Al-Fahad, M. A. (2011). Induced systemic and promotion of wheat and barley plants growth by biotic and non-biotic agents against barley yellow dwarf virus. African Journal of Biotechnology, 10(56), 12079–12084.

    Google Scholar 

  • Al-Ani, R. A., Adhab, M. A., & Matny, O. N. (2013). Management of potato virus Y (PVY) in potato by some biocontrol agents under field conditions. Advances in Environmental Biology, 7(3), 441–444.

    Google Scholar 

  • Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balogun, O. S., Xu, L., Teraoka, T., & Hosokawa, D. (2002). Effects of single and double infections with potato virus X and Tobacco mosaic virus on disease development, plant growth, and virus accumulation in tomato. Fitopatologia Brasileira, 27, 241–248.

    CAS  Google Scholar 

  • Bashan, Y., & de Bashan, L. E. (2002). Protection of tomato seedlings against infection by Pseudomonas syringae pv tomato using the plant growth promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology, 68, 2637–2643.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan, Y., Holguin, G., & Lifshitz, R. (1993). Isolation and characterization of plant growth promoting rhizobacteria. In B. R. Glick (Ed.), Methods in plant molecular biology and biotechnology (pp. 331–345). Boca Raton: CRC Press.

    Google Scholar 

  • Botta, L. A., Santacecilia, A., Ercole, C., Cacchio, P., & del Gallo, M. (2013). In vitro and in vivo inoculation of four endophytic bacteria on Lycopersicon esculentum. Nature Biotechnology, 30(6), 666–674.

    CAS  Google Scholar 

  • Brizard, J. P., Carapito, C., Delalande, F., Van Dorsselaer, A., & Brugidou, C. (2006). Proteome analysis of plant-virus interactome: Comprehensive data for virus multiplication inside their hosts. Molecular and Cellular Proteomics, 5, 2279–2297.

    CAS  PubMed  Google Scholar 

  • Cai, J., Zeng, Z., Connor, J. N., Huang, C. Y., Melino, V., Kumar, P., & Miklavcic, S. J. (2015). Rootgraph: A graphic optimization tool for automated image analysis of plant roots. Journal of Experimental Botany, 66(21), 6551–6562.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, M. F., & Bar-Joseph, M. (1984). Enzyme immunosorbent assay in plant virology. In K. Maramorosch & H. Koprowski (Eds.), Methods in virology (Vol. 7, pp. 51–58). New York: Academic Press.

    Google Scholar 

  • Cueto-Ginzo, A. I., Serrano, L., Sin, E., Rodríguez, R., Morales, J. G., Lade, S. B., Medina, V., & Achon, M. A. (2016a). Exogenous salicylic acid treatment delays initial infection and counteracts alterations induced by Maize dwarf mosaic virus in the maize proteome. Physiological and Molecular Plant Pathology, 96, 46–59.

    Google Scholar 

  • Cueto-Ginzo, A. I., Serrano, L., Bostock, R. M., Ferrio, J. P., Rodríguez, R., Arcal, L., Achón, M. A., Falcioni, T., Luzuriaga, W. P., & Medina, V. (2016b). Salicylic acid mitigates physiological and proteomic changes induced by the SPCP1 strain of Potato virus X in tomato plants. Physiological and Molecular Plant Pathology, 93, 1–11.

    CAS  Google Scholar 

  • Dashti, N. H., Montasser, M. S., Ali, N. Y., Bhardwaj, R. G., & Smith, D. L. (2007). Nitrogen biofixing bacteria compensate for the yield loss caused by viral satellite RNA associated with cucumber mosaic virus in tomato. The Plant Pathology Journal, 23(2), 90–96.

    Google Scholar 

  • Doubnerová, V., Müller, K., Čeřovská, N., Synková, H., Spoustová, P., & Ryšlavá, H. (2009). Effect of Potato Virus Y on the NADP-malic enzyme from Nicotiana tabacum L.: mRNA, expressed protein and activity. International Journal of Molecular Sciences, 10, 3583–3598.

    PubMed  PubMed Central  Google Scholar 

  • Falcioni, T., Ferrio, J. P., Cueto, A. I., Giné, J., Achón, M. A., & Medina, V. (2014). Effect of salicylic acid treatment on tomato plant physiology and to Potato virus X infection. European Journal of Plant Pathology, 138, 331e345.

    Google Scholar 

  • García-Marcos, A., Pacheco, R., Martiáñez, J., González-Jara, P., Díaz-Ruíz, J. R., & Tenllado, F. (2009). Transcriptional changes and oxidative stress associated with the synergistic interaction between Potato virus X and Potato virus Y and their relationship with symptom expression. Molecular Plant-Microbe Interactions, 22, 1431–1444.

    PubMed  Google Scholar 

  • Havelda, Z., & Maule, A. J. (2000). Complex spatial responses to cucumber mosaic virus infection in susceptible Cucurbita pepo cotyledons. The Plant Cell, 12, 1975–1985.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hooks, C. R. R., Wright, M. G., Kabasaw, D. S., Manandhar, R., & Almeida, R. P. P. (2008). Effect of banana bunchy top virus infection on morphology and growth characteristics of banana. Annals of Applied Biology, 153(1), 1–9.

    Google Scholar 

  • Huang, T. S., & Nagy, P. D. (2011). Direct inhibition of tombusvirus plus-strand RNA synthesis by a dominant negative mutant of a host metabolic enzyme, glyceraldehyde-3-phosphate dehydrogenase, in yeast and plants. Journal of Virology, 85, 9090–9102.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, J., Taylor, J. P., Chen, J. G., Uhrig, J. F., Schnell, D. J., Nakagawa, T., Korth, K. L., & Jones, A. M. (2006). The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell, 18, 1226–1238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, W., Chen, Q., Zhu, Y., Hu, F., Zhang, L., Ma, Z., He, Z., & Huang, J. (2013). Arabidopsis thylakoid formation 1 is a critical regulator for dynamics of PSII–LHCII complexes in leaf senescence and excess light. Molecular Plant, 6(5), 1673–1691.

    CAS  PubMed  Google Scholar 

  • Hussein, M., & Kamberoglu, M. A. (2017). The response to Potato virus X infection of tomato plants treated with ISR2000. European Journal of Plant Pathology, 149(4), 807–815.

    CAS  Google Scholar 

  • Ishiga, Y., Ishiga, T., Wangdi, T., Mysore, K. S., & Uppalapati, S. R. (2012). NTRC and chloroplast-generated reactive oxygen species regulate Pseudomonas syringae pv. Tomato disease development in tomato and Arabadopsis. Molecular Plant-Microbe Interactions, 25(3), 294–306.

    CAS  PubMed  Google Scholar 

  • Ishikawa, T., & Shigeoka, S. (2008). Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Bioscience, Biotechnology, and Biochemistry, 72, 1143–1154.

    CAS  PubMed  Google Scholar 

  • Izumi, M., Tsunoda, H., Suzuki, Y., Makino, A., & Ishida, H. (2012). RBCS1A and RBCS3B, two major members within the Arabadopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. Journal of Experimental Botany, 63(5), 2159–2170.

  • Jin, S., Kanagaraj, A., Verma, D., Lange, T., & Daniell, H. (2011). Release of hormones from conjugates: chloroplast expression of β-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters. Plant Physiology, 155(1):222–235.

  • Jorrín-Novo, J. V., Maldonado, A. M., Echevarría-Zomeño, S., Valledor, L., Castillejo, M. A., Curto, M., Valero, J., Sghaier, B., Donoso, G., & Redondo, I. (2009). Plant proteomics update (2007-2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. Journal of Proteomics, 72, 285–314.

    PubMed  Google Scholar 

  • Kaido, M., Abe, K., Mine, A., Hyodo, K., Taniguchi, T., Taniguchi, H., Mise, K., & Okuno, T. (2014). Gapdh-a recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement. PloS Pathology, 10, e1004505.

    Google Scholar 

  • Kannan, M., Ismail, I., & Bunawan, H. (2018). Maize dwarf mosaic virus: From genome to disease management. Viruses, 10(9), 492.

    PubMed Central  Google Scholar 

  • Keren, N., Ohkawa, H., Welsh, E. A., Liberton, M., & Pakrasi, H. B. (2005). Psb29, a conserved 22-kD protein, functions in the biogenesis of photosystem II complexes in Synechocystis and Arabidopsis. Plant Cell, 17, 2768–2781.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon, Y. S., Ryu, C.-M., Lee, S., Park, H. B., Han, K. S., Lee, J. H., Lee, K., Chung, W. S., Jeong, M. J., Kim, H. K., & Bae, D. W. (2010). Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta, 1370, 1355–1370.

    Google Scholar 

  • Lade, S. B., Román, C., Cueto-Ginzo, A. I., Serrano, L., Sin, E., Achón, M. A., & Medina, V. (2018). Host-specific proteomic and growth analysis of maize and tomato seedlings inoculated with Azospirillum brasilense Sp7. Plant Physiology and Biochemistry, 129, 381–393.

    CAS  PubMed  Google Scholar 

  • Lancashire, P. D., Bleiholder, H., Langelüddecke, P., & Stauss, R. (1991). An uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology, 119, 561–601.

    Google Scholar 

  • Leister, D. (2014). Complex(iti)es of the ubiquitous RNA-binding CSP41 proteins. Frontiers in Plant Science, 5(255), 1–4.

    Google Scholar 

  • Lepistö, A., Pakula, E., Toivola, J., Krieger-Liszkay, A., Vignols, F., & Rintamäki, E. (2013). Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods. Journal of Experimental Botany, 64, 3843–3854.

    PubMed  PubMed Central  Google Scholar 

  • Lin, L., Luo, Z., Yan, F., Lu, Y., Zheng, H., & Chen, J. (2011). Interaction between potyvirus P3 and ribulose-1,5 bisphosphatecarboxylase/ oxygenase (RubisCO) of host plants. Virus Genes, 43, 90–92.

    CAS  PubMed  Google Scholar 

  • Lindsey, D. W., & Gudauskas, R. T. (1975). Effects of maize dwarf mosaic virus on water relations of corn. Phytopathology, 65(4), 434–440.

    CAS  Google Scholar 

  • Matthews, R. (1982). The classification and nomenclature of viruses: Summary of results of meetings of the international committee on taxonomy of viruses in Strasbourg. Intervirology, 16, 53–60.

    Google Scholar 

  • Maule, A.J. (2001). Virus and Host Plant Interactions. In J. Wiley & Sons (Eds), Encyclopedia of Life Sciences, (pp. 1–7). Norwich, UK: John Innes Centre. 

  • Morita, K., Hatanaka, T., Misoo, S., & Fukayama, H. (2014). Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of Rubisco in rice. Plant Physiology, 164, 69–79.

    CAS  PubMed  Google Scholar 

  • Muhlenbock, P., Szechynska-Hebda, M., Plaszczyca, M., Baudo, M., Mateo, A., Mullineaux, P. M., Parker, J. E., Karpinksa, B., & Karpinski, S. (2008). Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. Plant Cell, 20, 2339–2356.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ojeda, V., Pérez-Ruiz, J. M., González, M., Nájera, V. A., Sahrawy, M., Serrato, A. J., Geigenberger, P., & Cejudo, F. J. (2017). NADPH thioredoxin reductase C and thioredoxins act concertedly in seedling development. Plant Physiology, 174, 1436–1448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okon, Y., Albrecht, S. L., & Burris, R. H. (1977). Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Applied and Environmental Microbiology, 33, 85–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passardi, F., Tognolli, M., De Meyer, M., Penel, C., & Dunand, C. (2006). Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta, 223(5), 965–974.

    CAS  PubMed  Google Scholar 

  • Prasanth, K. R., Huang, Y. W., Liou, M. R., Wang, R. Y., Hu, C. C., Tsai, C. H., Meng, M., Lin, N. S., & Hsu, Y. H. (2011). Glyceraldehyde 3-phosphate dehydrogenase negatively regulates the replication of bamboo mosaic virus and its associated satellite RNA. Journal of Virology, 85, 8829–8840.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao, Y., Li, H. F., Wong, S. M., & Fan, Z. F. (2009). Plastocyanin transit peptide interacts with potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants. Molecular Plant-Microbe Interactions, 22, 1523–1534.

    CAS  PubMed  Google Scholar 

  • Rao, X., & Dixon, R. A. (2016). The differences between NAD-ME and NADP-ME subtypes of C4 photosynthesis: More than decarboxylating enzymes. Frontiers in Plant Science, 7, 1525.

    PubMed  PubMed Central  Google Scholar 

  • Romanowska, E., Buczynska, A., Wasilewska, W., Krupnik, T., Drozak, A., Rogowski, P., Parys, E., & Zienkiewicz, M. (2017). Differenences in photosynthetic responses of NADP-ME type C4 species to high light. Planta, 245, 641–657.

    CAS  PubMed  Google Scholar 

  • Rosa-Téllez, S., Anoman, A. D., Flores-Tornero, M., Toujani, W., Alseek, S., Fernie, A. R., Nebauer, S. G., Muñoz-Bertomeu, J., Segura, J., & Ros, R. (2017). Phosphoglycerate kinases are co-regulated to adjust metabolism and to optimize growth. Plant Physiology, 176(2), 1182–1198.

    PubMed  PubMed Central  Google Scholar 

  • Roshanpour, N., Darzi, M. T., & Hadi, M. H. S. (2014). Effects of plant growth promoter bacteria on biomass and yield of basil (Ocimum basilicum L.). International Journal of Advanced Biological and Biomedical Research, 2(6), 2077–2085.

    Google Scholar 

  • Scholthof, K.-B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., & Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12, 938–954.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strand, L. (2006). Disease. In L. Strand (Ed), Integrated Pest Management for Potatoes in the western United States 2nd edn. (p. 95). Davis, CA: University of California Division of Agriculture and Natural Resources.

  • Tanaka, S., Sawaya, M. R., Kerfeld, C. A., & Yeates, T. O. (2007). Structure of the Rubisco chaperone RbcX from Synechocystis sp. PCC6803. Acta Cryst, D63, 1109–1112.

    Google Scholar 

  • The UniProt Consortium. (2017). UniProt: The universal protein knowledgebase. Nucleic Acids Research, 45, D158–D169.

    Google Scholar 

  • Timm, S., Florian, A., Fernie, A. R., & Bauwe, H. (2016). The regulatory interplay between photorespiration and photosynthesis. Journal of Experimental Botany, 67(10), 2923–2929.

    CAS  PubMed  Google Scholar 

  • Tortora, M. L., Díaz-Ricci, J. C., & Pedraza, R. O. (2011). Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Archives of Microbiology, 193, 275–286.

    CAS  PubMed  Google Scholar 

  • Tosic, M., & Misovic, M. (1967). A study of the maize mosaic virus occurrence and its effect on the growth and yield of some corn varieties and hybrids. Zaštita Bilja, 93-95, 173–180.

    Google Scholar 

  • Tu, J. C., & Ford, R. E. (1968). Effect of maize dwarf mosaic virus infection on respiration and photosynthesis of corn. Phytopathology, 58(3), 282–284.

    Google Scholar 

  • Van Regenmortel, M. H. V., & Mahy, B. W. J. (2004). Emerging issues in virus taxonomy. Emerging Infectious Diseases, 10(1), 8–13.

    PubMed  PubMed Central  Google Scholar 

  • Wang, S. D., Zhu, F., Yuan, S., Yang, H., Xu, F., Shang, J., Xu, M. Y., Jia, S. D., Zhang, Z. W., Wang, J. H., Xi, D. H., & Lin, H. H. (2011). The roles of ascorbic acid and glutathione in symptom alleviation to SA-deficient plants infected with RNA viruses. Planta, 234, 171–181.

    CAS  PubMed  Google Scholar 

  • Wangdi, T., Uppalapati, S. R., Nagaraj, S., Ryu, C.-M., Bender, C. L., & Mysore, K. S. (2010a). A role for chloroplast-localized thylakoid formation 1 (ThF1) in bacterial speck disease development. Plant Signaling & Behavior, 5(4), 425–427.

    CAS  Google Scholar 

  • Wangdi, T., Uppalapati, S. R., Nagaraj, S., Ryu, C.-M., Bender, C. L., & Mysore, K. S. (2010b). A virus-induced gene silencing screen identifies a role for thylakoid Formation1 in Pseudomonas syringae pv. Tomato symptom development in tomato and Arabidopsis. Plant Physiology, 152(28), 1–92.

    Google Scholar 

  • Xu, Q., Ni, H., Chen, Q., Sun, F., Zhou, T., Lan, Y., & Zhou, Y. (2013). Comparative proteomic analysis reveals the cross-talk between the responses induced by H2O2 and by longterm Rice Black-streaked dwarf virus infection in rice. PLoS One, 8(11), e81640.

    PubMed  PubMed Central  Google Scholar 

  • Yildiz, R.C., & Aysan, Y. (2005). Determination on effect of plant activators on tomato seedling infested with pathogen (Clavibacter michiganensis subsp. michiganensis) of bacterial wilt disease. Turkey 2nd seed congress 9–11 November, Adana, 359 pp.

  • Zechmann, B., Muller, M., & Zellnig, G. (2003). Cytological modifications in zucchini yellow mosaic virus (ZYMV)-infected Styrian pumpkin plants. Archives of Virology, 148, 1119–1133.

    CAS  PubMed  Google Scholar 

  • Zhao, J., Liu, Q., Zhang, H., Jia, Q., Hong, Y., & Liu, Y. (2013). The rubisco small subunit is involved in Tobamovirus movement and Tm-2 2-mediated extreme. Plant Physiology, 161, 374–383.

    CAS  Google Scholar 

  • Zhao, J., Zhang, X., Hong, Y., & Liu, Y. (2016). Chloroplast in plant-virus interaction. Frontiers in Microbiology, 7, 1565.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, S., Hong, W., Wu, J., Wang, Y., Ji, S., Zhu, S., Wei, C., Zhang, J., & Li, J. (2017). A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection. eLife, 6, e27529.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the MINCyT (Spain) for supporting this research with project refs. AGL2010-15691 and PGC2018-097655-B-I00. SL was supported by the UdL-Jade Plus Grant for pre-doctoral researchers and AIC by the UdL-IMPULS program. The authors would like to especially thank Dr. Isabel Sanchez for helping with the proteomic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Boyd Lade.

Ethics declarations

The paper has not been submitted elsewhere for publication, in whole or in part.

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Human and animal studies

The research did not involve any human participants and/or animals.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lade, S.B., Román, C., del Cueto-Ginzo, A.I. et al. Differential proteomics analysis reveals that Azospirillium brasilense (Sp7) promotes virus tolerance in maize and tomato seedlings. Eur J Plant Pathol 155, 1241–1263 (2019). https://doi.org/10.1007/s10658-019-01852-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01852-6

Keywords

Navigation