Skip to main content

Comparison of viral infection risk between organic and conventional crops of tomato in Spain

Abstract

The harmful effects of conventional agriculture on the environment and human health have been an increasing concern, resulting in the search for alternative and more sustainable agricultural systems in the last decades. Organic farming is the fastest growing system worldwide, but there is a controversial debate on the ability of the agroecological practices to cope with diseases and pests and produce food for the world population. However, comparative studies on the effect of organic farming on plant disease are almost non-existent particularly concerning plant virus diseases. In this work, a survey of Tomato mosaic virus (ToMV), Cucumber mosaic virus (CMV) and Tomato spotted wilt virus (TSWV) was performed in tomato crops under organic or conventional management by sampling 40 small farms in Eastern Spain. ToMV had the highest incidence whereas few plants were infected by CMV and none by TSWV. Viral infection risk was estimated as the probability of a plant being infected by at least one of the three viruses or by each virus separately according to a Bayesian logistic regression model. Our analysis showed that the infection risk by these viruses was lower in organic than in conventional farms in two non-consecutive years.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Altieri, M. A. (1995). Agroecology: The science of sustainable agriculture (2nd ed.). Boulder, CO: Westview Press.

    Google Scholar 

  • Alvares, D., Armero, C., Forte, A., & Rubio, L. (2016). Exploring Bayesian models to evaluate control procedures for plant disease. Statistics and Operations Research Statistics, 40, 139–152.

    Google Scholar 

  • Alvares D, Armero C, Forte A, Serra J, Galipienso L, Rubio L (2017) Incidence and control of black spot syndrome of tiger nut. Annals of Applied Biology 171(3):417–423

    CAS  Article  Google Scholar 

  • Alvares D, Armero C, Forte A (2018) What does objective mean in a dirichlet-multinomial process?. Int Stat Rev 86(1):106–118

    Article  Google Scholar 

  • Bengtsson, J., Ahnström, J., & Weibull, A. (2005). The effects of organic agriculture on biodiversity and abundance: A meta-analysis. Journal of Applied Ecology, 42, 261–269.

    Article  Google Scholar 

  • Berkelmans, R., Ferris, H., Tenuta, M., & van Bruggen, A. H. C. (2003). Effects of long-term crop management on nematode trophic levels other than plant feeders disappear after 1 year of disruptive soil management. Applied Soil Ecology, 23, 223–235.

    Article  Google Scholar 

  • Christensen, R., Johnson, W., Branscum, A., & Hanson, T. E. (2011). Bayesian ideas and data analysis: An introduction for scientists and statisticians. Boca de Raton, FL: CRC Press.

    Google Scholar 

  • Clark, M. F., & Adams, A. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34, 475–483.

    CAS  Article  Google Scholar 

  • Crowder, D.W., & Reganold, J.P. (2015). Financial competitiveness of organic agriculture on a global scale. Proceedings of the National Academy of Sciences of the United States of America, 112, 7611-7616.

  • Debreczeni, D., Ruiz-Ruiz, S., Aramburu, J., López, C., Belliure, B., Galipienso, L., Soler, S., & Rubio, L. (2011). Detection, discrimination and absolute quantitation of Tomato spotted wilt virus isolates using real time RT-PCR with TaqMan® MGB probes. Journal of Virological Methods, 176, 32–37.

    CAS  Article  Google Scholar 

  • Debreczeni, D., López, C., Aramburu, J., Daros, J. A., Soler, S., Galipienso, L., Falk, B. W., & Rubio, L. (2015). Complete sequence of three different biotypes of tomato spotted wilt virus (wild type, tomato Sw-5 resistance-breaking and pepper Tsw resistance breaking) from Spain. Archives of Virology, 160, 2117–2123.

    CAS  Article  Google Scholar 

  • Dennehy, J. J. (2017). Evolutionary ecology of virus emergence. Annals of the New York Academy of Sciences, 1389, 124–146.

    Article  Google Scholar 

  • Elena, S. F., Fraile, A., & García-Arenal, F. (2014). Evolution and emergence of plant viruses. Advances in Virus Research, 88, 161–191.

    CAS  Article  Google Scholar 

  • Entz, M., Penner, K., Vessey, J., Zelmer, C., & Thiessen-Martens, J. (2004). Mycorrhizal colonization of flax under long-term organic and conventional management. Canadian Journal of Plant Science, 84, 1097–1109.

    Article  Google Scholar 

  • Ferriol, I., Rangel, E., Panno, S., Davino, S., Han, C., Olmos, A., & Rubio, L. (2015). Rapid detection and discrimination of fabaviruses by flow-through hybridisation with genus- and species-specific riboprobes. Annals of Applied Biology, 167, 26–35.

    CAS  Article  Google Scholar 

  • Finckh, M. R., van Bruggen, A. H. C., & Tamm, L. (2015). Plant diseases and their management in organic agriculture. St. Paul, Minnesota, USA: APS Press.

    Google Scholar 

  • Fu, Z. Q., & Dong, X. (2013). Systemic acquired resistance: Turning local infection into global defense. Annual Review of Plant Biology, 64, 839–863.

    CAS  Article  Google Scholar 

  • Garrett, K. A., Madden, L. V., Hughes, G., & Pfender, W. F. (2004). New applications of statistical tools in plant pathology. Phytopathology, 94, 999–1003.

    CAS  Article  Google Scholar 

  • Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2004). Bayesian data analysis (2nd ed.). London, UK: Chapman & Hall/CRC.

    Google Scholar 

  • Hanssen, I. M., Lapidot, M., & Thomma, B. P. (2010). Emerging viral diseases of tomato crops. Molecular Plant-Microbe Interactions, 23, 539–548.

    CAS  Article  Google Scholar 

  • Held, L., & Sabanés Bové, D. (2014). Numerical Methods for Bayesian Inference. In Numerical methods for Bayesian inference (Pages 247–289. In: Applied statistical inference). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Hull, R. (2009). Comparative plant virology. London: Academic press.

    Google Scholar 

  • Jones, R. A. (2009). Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research, 141, 113–130.

    CAS  Article  Google Scholar 

  • Lázaro, E., Armero, C., & Rubio, L. (2016). Bayesian survival analysis to model plant resistance and tolerance to virus diseases. In International Conference on Bayesian Statistics in Action (pp. 173–181). Springer, Cham.

  • Lázaro, E., Armero, C., & Rubio, L. (2017). Bayesian correlated models for assessing the prevalence of viruses in organic and non-organic agroecosystems. Statistics and Operations Research Statistics, 41, 93–116.

    Google Scholar 

  • Levene, H. (1960). Robust tests for equality of variances. Pages 278–292. In contributions to probability and statistics. I. Olkin I, ed. Palo Alto, Stanford University Press.

  • López, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F., & Rubio, L. (2011). Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. Journal of General Virolology, 92, 210–215.

    Article  Google Scholar 

  • Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296, 1694–1697.

    Article  Google Scholar 

  • Maffei, G., Miozzi, L., Fiorilli, V., Novero, M., Lanfranco, L., & Accotto, G. P. (2014). The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza, 24, 179–186.

    CAS  Article  Google Scholar 

  • MAPA. (1994). Métodos oficiales de Análisis: Tomo III. In Ministerio de Agricultura. Pesca y: Alimentación, Madrid.

    Google Scholar 

  • Mila, A. L., & Carriquiry, A. L. (2004). Bayesian analysis in plant pathology. Phytopathology, 94, 1027–1030.

    CAS  Article  Google Scholar 

  • Mila, A. L., Yang, X. B., & Carriquiry, A. L. (2003). Bayesian logistic regression of soybean Sclerotinia stem rot prevalence in the US north-central region: Accounting for uncertainty in parameter estimation. Phytopathology, 93, 758–764.

    CAS  Article  Google Scholar 

  • Pagán, I., González-Jaral, Moreno-Letelier, A., Rodelo-Urrego, M., Fraile, A., Piñero, D., & García-Arenal, F. (2012). Effect of biodiversity changes in disease risk: Exploring disease emergence in a plant-virus system. PLoS Pathogens, 8, e1002796.

  • Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375.

    CAS  Article  Google Scholar 

  • Pimentel, D., Hepperly, P., Hanson, J., Douds, D., & Seidel, R. (2005). Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience, 55, 573–582.

    Article  Google Scholar 

  • Pretty, J., Sutherland, W. J., Ashby, J., Auburn, J., Baulcombe, D., Bell, M., Bentley, J., Bickersteth, S., Brown, K., & Burke, J. (2010). The top 100 questions of importance to the future of global agriculture. International Journal of Agricultural Sustainability, 8, 219–236.

    Article  Google Scholar 

  • Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2, 1–8.

    Google Scholar 

  • Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 71, 319–392.

    Google Scholar 

  • Tuck, S. L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L. A., & Bengtsson, J. (2014). Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. Journal of Applied Ecology, 51, 746–755.

    Article  Google Scholar 

  • Van Bruggen, A. H. (1995). Plant disease severity in high-input compared to reduced-input and organic farming systems. Plant Disease, 79, 976–984.

    Article  Google Scholar 

  • Van Bruggen, A. H., Gamliel, A., & Finckh, M. R. (2016). Plant disease management in organic farming systems. Pest Management Science, 72, 30–44.

    Article  Google Scholar 

  • Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616–617, 255–268.

    Article  Google Scholar 

  • Van Bruggen, A. H. C., Goss, E. M., Havelaar, A., van Diepeningen, A. D., Finckh, M. R., & Morris, J. G. (2019). One health—Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. Science of the Total Environment, 664, 927–937.

    Article  Google Scholar 

  • Wezel, A., Casagrande, M., Celette, F., Vian, J., Ferrer, A., & Peigné, J. (2014). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development, 34, 1–20.

    Article  Google Scholar 

Download references

Acknowledgments

E.L.H. was the recipient of a predoctoral fellowship FPU from the Spanish Ministry of Education, Culture, and Sports. We thank Dr. Isabel Font for providing ToMV- and CMV-infected plant material and Dr. José Guerri for critical suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rubio.

Ethics declarations

This work was funded in part by grants RTA2013–00047-C01 from INIA co-financed with FEDER funds, MTM2016–77501-P from the Spanish Ministry of Economy and Competitiveness and ACOMP/2015/202 from Generalitat Valenciana. The authors declare no conflict of interest. This article does not contain any work conducted on animal or human participants.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lázaro, E., Armero, C., Roselló, J. et al. Comparison of viral infection risk between organic and conventional crops of tomato in Spain. Eur J Plant Pathol 155, 1145–1154 (2019). https://doi.org/10.1007/s10658-019-01843-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01843-7

Keywords

  • Tomato mosaic virus
  • Cucumber mosaic virus
  • Tomato spotted wilt virus