Skip to main content

Advertisement

Log in

Nitrogen fertilization and fungicide mixtures in wheat: how do they affect the severity, yield and dynamics of nitrogen under leaf rust infections?

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Nitrogen (N) fertilization and fungicides are important tools in order to achieve high yields and quality in wheat (Triticum aestivum L.), although its use may affect the expression of foliar diseases such as leaf rust (LR) (Puccinia triticina Eriks.). An approach focused on the impact of LR and its interaction with fungicides mixtures and N fertilization rates could be useful to improve the modelling of crop N dynamics and enhance grain yield and quality in the context of the integrated management. Our study was designed to determine the additive effects of carboxamide fungicides (TSC) to a double triazole-strobilurin (TS) mixture under three N fertilization rates on the LR disease progress, healthy area duration (HAD), grain yield and N dynamics during two years. Main plots corresponded to three fungicide treatments and three N doses were the sub-plots. LR disease progress, HAD, yield, N remobilization (NREM), N post-anthesis absorption (NPA), N stored in grains (NG) and %N in grains (%Ng) were evaluated. LR severity increased at higher N rates. TSC applications produced the major decreases on LR severity and the main increases in HAD, which resulted in the higher yield increases (+2726 kg/ha). The %Ng increased with the application of fungicides when LR was controlled. LR infections generated reductions in NREM, NPA and NG, a response that could be explained by decreases in aboveground biomass and yield, coupled with reductions on N harvest index and N remobilization efficiency. Combined effect of TSC fungicides and increases in N dose showed the largest increases in NREM, NPA and NG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AGB:

Aboveground biomass

AUDPC:

Area under disease progress curve

GLAI:

Green leaf area index

HAD:

Healthy area duration

FLHAD:

Flag leaf healthy area duration

LR:

Leaf Rust

NHI:

N harvest index

NREM:

N remobilization

NRE:

N remobilization efficiency

NPA:

N post-anthesis absorption

%Ng:

%N in grains

NG:

N stored in grains

TS:

Triazole + Strobilurin fungicide

TSC:

Triazole + Strobilurin + Carboxamide fungicide

References

  • Ajigboye, O. O., Murchie, E., & Ray, R. V. (2014). Foliar application of isopyrazam and epoxiconazole improves photosystem II efficiency, biomass and yield in winter wheat. Pesticide Biochemistry and Physiology, 114, 52–60.

    CAS  PubMed  Google Scholar 

  • AOAC (1970). Official Methods of Analysis. Association of Official Analytical Chemist, 11th ed. pp. 1015 Washington DC, USA

  • Bancal, M. O., Roche, R., & Bancal, P. (2008). Late foliar diseases in wheat crops decrease nitrogen yield through N uptake rather than through variations in N remobilization. Annals of Botany, 102, 579–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbottin, A., Lecompte, C., Bouchard, C., & Jeuffroy, M. H. (2005). Nitrogen remobilization during grain filling in wheat: Genotypic and environmental effects. Crop Science, 45, 1141–1150.

    Google Scholar 

  • Barraclough, P. B., Lopez-Bellido, R., & Hawkesford, M. J. (2014). Genotypic variation in the uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat. Field Crops Research, 156, 242–248.

    PubMed  PubMed Central  Google Scholar 

  • Bastiaans, L. (1993). Effects of leaf blast on growth and production of a rice crop. 1. Determining the mechanism of yield reduction. Netherland Journal of Plant Pathology, 99, 323–334.

    Google Scholar 

  • Berdugo, C. A., Mahlein, A. K., Steiner, U., Dehne, H. W., & Oerke, E. C. (2012). Sensors and imaging techniques for the assessment of the delay of wheat senescence induced by fungicides. Functional Plant Biology, 40, 677–689.

    Google Scholar 

  • Blandino, M., & Reyneri, A. (2009). Effect of fungicide and foliar fertilizer application to winter wheat at anthesis on flag leaf senescence, grain yield, flour bread-making quality and DON contamination. European Journal of Agronomy, 30, 275–282.

    CAS  Google Scholar 

  • Bolton, M. D., Kolmer, J. A., & Garvin, D. F. (2008). Wheat leaf rust caused by Puccinia triticina. Molecular Plant Pathology, 9, 563–575.

    PubMed  PubMed Central  Google Scholar 

  • Brinkman, J. M. P., Deen, W., Lauzon, J. D., & Hooker, D. C. (2014). Synergism of nitrogen rate and foliar fungicides in soft red winter wheat. Agronomy Journal, 106, 491–510.

    CAS  Google Scholar 

  • Castro, A. C., Fleitas, M. C., Schierenbeck, M., Gerard, G. S., & Simón, M. R. (2018). Evaluation of different fungicides and N rates on grain yield and bread-making quality in wheat affected by Septoria tritici blotch and yellow spot. Journal of Cereal Science, 83, 49–57.

    CAS  Google Scholar 

  • Crowdy, S. H., & Manners, J. G. (1971). Microbial disease and plant productivity. Symposia of the Society of General Microbiology, 21, 103–123.

    Google Scholar 

  • Devadas, R., Simpfendorfer, S., Backhouse, D., & Lamb, D. W. (2014). Effect of stripe rust on the yield response of wheat to nitrogen. The Crop Journal, 2, 201–206.

    Google Scholar 

  • Dimmock, J. P. R. E., & Gooding, M. J. (2002a). The effects of fungicide on rate and duration of grain filling in winter wheat in relation to maintenance of flag leaf green area. Journal of Agricultural Science, 138, 1–16.

    CAS  Google Scholar 

  • Dimmock, J. P. R. E., & Gooding, M. J. (2002b). The influence of foliar diseases, and their control by fungicides, on the protein concentration in wheat grain: A review. Journal of Agricultural Science, 138, 349–366.

    CAS  Google Scholar 

  • FAO (2019). Food and Agriculture Organization. Available in: http://www.fao.org Last Access: July de 2019.

  • Fischer, R.A., Byerlee, D., Edmeades, G.O., (2014) Crop yields and global food security: Will yield increase continue to feed the world? ACIAR monograph no. 158. (Australian Centre for International Agricultural Research: Canberra, ACT).

  • Fleitas, M. C., Gerard, G. S., & Simón, M. R. (2015). Eficacia residual de fungicidas sobre la roya de la hoja del trigo y su efecto sobre componentes del rendimiento y porcentaje de proteínas en grano. Revista FAVE, Sección Ciencias Agrarias, Facultad de Ciencias Agrarias de la Universidad Nacional del Litoral, 14, 69–84.

    Google Scholar 

  • Fleitas, M. C., Schierenbeck, M., Gerard, G. S., Dietz, J. I., Golik, S. I., & Simón, M. R. (2018a). Breadmaking quality and yield response to the green leaf area duration caused by fluxapyroxad under three nitrogen rates in wheat affected with tan spot. Crop Protection, 106, 201–209.

    CAS  Google Scholar 

  • Fleitas, M. C., Schierenbeck, M., Gerard, G. S., Dietz, J. I., Golik, S. I., & Simón, M. R. (2018b). How leaf rust disease and its control with fungicides affect dough properties, gluten quality and loaf volume under different N rates in wheat. Journal of Cereal Science, 80, 119–127.

    CAS  Google Scholar 

  • GenStat for Windows, 2012. Copyright VSN International Ltd. 12 th edition

  • Golik, S. I. (2009). Efecto de los sistemas de labranza, fertilización nitrogenada y genotipo sobre el sistema radical en etapas avanzadas del cultivo de trigo y su incidencia en el rendimiento, calidad y sanidad (162). UNLP: Tesis Doctorado Facultad de Ciencias Agrarias y Forestales.

    Google Scholar 

  • Gooding, M. J., Dimmock, J. P., France, R. E., & Jones, J. (2000). Green leaf area decline of wheat flag leaves: The influence of fungicides and relationships with mean grain weight and grain yield. Annals of Applied Biology, 136, 77–84.

    CAS  Google Scholar 

  • Gooding, M. J., Gregory, P. J., Ford, K. E., & Pepler, S. (2005). Fungicide and cultivar affect post-anthesis patterns of nitrogen uptake, remobilization and utilization efficiency in wheat. Journal of Agricultural Science, 143, 503–518.

    CAS  Google Scholar 

  • Hall, J. A., & Richards, R. A. (2013). Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Research, 143, 18–33.

    Google Scholar 

  • Hawkesford, M. J. (2014). Reducing the reliance on nitrogen fertilizer for wheat production. Journal of Cereal Sciences, 59, 276–283.

    CAS  Google Scholar 

  • Herrman, T. J., Bowden, R. L., Loughin, T., & Bequette, R. K. (1996). Quality response to the control of leaf rust in karl hard red winter wheat. Cereal Chemistry, 73, 235–238.

    CAS  Google Scholar 

  • Hoffland, E., Jeger, M. J., & van Beusichem, M. L. (2000). Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen. Plant and Soil, 218, 239–247.

    CAS  Google Scholar 

  • Huerta-Espino, J., Singh, R. P., German, S., McCallum, B. D., Park, R. F., Chen, W. Q., Bhardwaj, S. C., & Goyeau, H. (2011). Global status of wheat leaf rust caused by Puccinia triticina. Euphytica, 179, 143–160.

    Google Scholar 

  • Kant, S., Bi, Y. M., & Rothstein, S. J. (2010). Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany, 62, 1499–1509.

    PubMed  Google Scholar 

  • Kremer, M., & Hoffmann, G. M. (1993). Effekte von Blattinfektionen durch Drechslera tritici-repentis auf den Kohlenhydrat- und Stickstoffhaushalt von Weizenpflanzen. Journal of Plant Diseases and Protection, 100, 259–277.

    CAS  Google Scholar 

  • Lemmens, M., Buerstmayr, H., Krska, R., Schumacher, R., Grausgruber, H., & Rackenbauer, P. (2004). The effect of inoculation treatment and long term application of moisture on Fusarium head blight symptoms and deoxynivalenol contamination in wheat grains. European Journal of Plant Pathology, 110, 299–308.

    CAS  Google Scholar 

  • Lucas, J. A. (1998). Plant pathology and plant pathogens (3rd ed.). Oxford: Blackwell Science.

    Google Scholar 

  • Miralles, D.J., Slafer, G.A. (1990). Estimación del área foliar en trigo: Generación y validación de un modelo. 11vo Congreso Nacional de Trigo. Pergamino. Cap. l: pp. 76-85.

  • Mitchell, C. E., Reich, P. B., Tilman, D., & Groth, J. V. (2003). Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Global Change Biology, 9, 438–451.

    Google Scholar 

  • Neumann, S., Paveley, N. D., Beed, F. D., & Sylvester-Bradley, R. (2004). Nitrogen per unit leaf area affects the upper asymptote of Puccinia striiformis f. sp. tritici epidemics in winter wheat. Plant Pathology, 53, 725–732.

    Google Scholar 

  • Ney, B., Bancal, M. O., Bancal, P., Bingham, I. J., Foulkes, J., Gouache, D., Paveley, N., & Smith, J. (2013). Crop architecture and crop tolerance to fungal diseases and insect herbivory. Mechanisms to limit crop losses. European Journal of Plant Pathology, 135, 561–580.

    Google Scholar 

  • Olesen, J. E., Jorgensen, L. N., Petersen, J., & Mortensen, J. V. (2003). Effects of rates and timing of nitrogen fertilizer on disease control by fungicides in winter wheat. 2. Crop growth and disease development. Journal of Agricultural Science, 140, 15–29.

    CAS  Google Scholar 

  • Pepler, S., Gooding, M. J., Ford, K. E., Ellis, R. H., & Jones, S. A. (2005). A temporal limit to the association between flag leaf life extension by fungicides and wheat yields. European Journal of Agronomy, 22, 363–373.

    CAS  Google Scholar 

  • Puppala, V., Herrman, T. J., Bockus, W. W., & Loughin, T. M. (1998). Quality responses of twelve hard red winter wheat cultivars to foliar disease across four locations in Central Kansas. Cereal Chemistry, 75, 148–151.

    Google Scholar 

  • Robert, C., Bancal, M. O., & Lannou, C. (2004). Wheat leaf rust uredospore production on adult plants: Influence of leaf nitrogen content and Septoria tritici blotch. Phytopathology, 94, 712–721.

    PubMed  Google Scholar 

  • Ruske, R. E., Gooding, M. J., & Jones, S. A. (2003). The effects of adding picoxystrobin, azoxystrobin and nitrogen to a triazole programme on disease control, flag leaf senescence, yield and grain quality of winter wheat. Crop Protection, 22, 975–987.

    CAS  Google Scholar 

  • Savary, S., Teng, P. S., Willocquet, L., & Nutter, F. W. (2006). Quantification and modelling crop losses: A review of purposes. Annual Review of Phytopathology, 44, 89–112.

    CAS  PubMed  Google Scholar 

  • Schierenbeck, M., Fleitas, M. C., Miralles, D. J., & Simón, M. R. (2016). Does radiation interception or radiation use efficiency limit the growth of wheat inoculated with tan spot or leaf rust? Field Crop Research, 199, 65–76.

    Google Scholar 

  • Schierenbeck, M., Fleitas, M. C., Simón, M. R., Cortese, F., & Golik, S. I. (2019a). Nitrogen accumulation in grains, remobilization and post-anthesis uptake under tan spot and leaf rust infections on wheat. Field Crops Research, 235, 27–37.

    Google Scholar 

  • Schierenbeck, M., Fleitas, M. C., Gerard, G. S., Dietz, J. I., & Simón, M. R. (2019b). Combinations of fungicide molecules and nitrogen fertilization revert nitrogen yield reductions generated by Pyrenophora tritici-repentis infections in bread wheat. Crop Protection, 121, 173–181.

    CAS  Google Scholar 

  • Serrago, R. A., Carretero, R., Bancal, M. O., & Miralles, D. J. (2009). Foliar diseases affect the ecophysiological attributes linked with yield and biomass in wheat (Triticum aestivum L). European Journal of Agronomy, 31, 95–203.

    Google Scholar 

  • Shaner, G., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, 67, 1051–1056.

    CAS  Google Scholar 

  • Shtaya, MYY (2014). Sources of partial resistance to leaf rust in hard wheat landrace cultivated in Palestine. Walailak Journal of Science and Technology (WJST), 12, (3) 245–250

  • Smith, J., Grimmer, M., Waterhouse, S., & Paveley, N. (2013). Quantifying the non-fungicidal effects of foliar applications of fluxapyroxad (Xemium) on stomatal conductance, water use efficiency and yield in winter wheat. Communications in Agricultural and Applied Biological Sciences, 78, 523–535.

    CAS  PubMed  Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1983). Statistical methods (6th ed.). New Delhi: Oxford and IBH.

    Google Scholar 

  • Snoeijers, S. S., Perez-Garcia, A., Joosten, M. H. A. J., & De Wit, P. J. G. M. (2000). The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. European Journal of Plant Pathology, 106, 493–506.

    CAS  Google Scholar 

  • Solomon, P. S., Tan, K. C., & Oliver, R. P. (2003). The nutrient supply of pathogenic fungi; a fertile field for study. Molecular Plant Pathology, 4, 203–210.

    PubMed  Google Scholar 

  • Tavernier, V., Cadiou, S., Pageau, K., Laugé, R., Reisdorf-Cren, M., Langin, T., & Masclaux-Daubresse, C. (2007). The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity. Journal of Experimental Botany, 58, 3351–3360.

    CAS  PubMed  Google Scholar 

  • Verreet, J. A., & Hoffmann, G. M. (1990). Effect of leaf and ear infection by Septoria nodorum at different growth stages of wheat on plant N content and amino acid composition. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 97, 1–12.

    CAS  Google Scholar 

  • Waggoner, P. E., & Berger, R. (1987). Defoliation, disease and growth. Phytopathology, 77, 393–398.

    Google Scholar 

  • Walters, D. R. (1989). Phosphorous and nitrogen fluxes between plant and fungus in parasitic associations. In L. Boddy, R. Marchant, & D. J. Read (Eds.), Nitrogen, phosphorus and Sulphur utilisation by Fungi (pp. 131–154). Cambridge: Cambridge University Press.

    Google Scholar 

  • Walters, D. R., & Bingham, I. J. (2007). Influence of nutrition on disease development caused by fungal pathogens: Implications for plant disease control. Annals of Applied Biology, 151, 307–324.

    CAS  Google Scholar 

  • Waterhouse, S., Semar, M. (2012). The contribution of BASF SDHI chemistry to cereal yield performance. Proceedings Crop Protection in Northern Britain 2012.

  • Wegulo, S., Stevens, J., Zwingman, M., Baenziger, P.S. (2012). Yield response to foliar fungicide application in winter wheat, fungicides for plant and animal diseases, Dr. Dharumadurai Dhanasekaran (Ed.), ISBN: 978-953-307-804-5, InTech, https://doi.org/10.5772/25716. Available from: http://www.intechopen.com/books/fungicides-for-plant-and-animal-diseases/yield-response-to-foliar-fungicide-application-in-winter-wheat. Accessed March 2019.

    Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Google Scholar 

Download references

Acknowledgements

We wish to thank the staff from the J. Hirschhorn Experimental Station (FCAyF-UNLP).

Funding

This study was funded by projects from ANPCYT, PICT 2181/2010, UNLP A300 and PIP 11220130100819 CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Schierenbeck.

Ethics declarations

Conflict of interest

The authors declare that they have not conflict of interest.

Ethical statements

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

• Leaf rust effects on N dynamics under different N doses and fungicides mixtures was evaluated

• N fertilization increase leaf rust severity and reduce flag leaf area duration in untreated plots

• Leaf rust infections provokes reductions on crop growth rate and N accumulation rate

• TSC and N fertilization revert negative effects of leaf rust on N dynamics and yield

• The triple fungicide mixture exceeded the double mixture in all parameters analyzed

• Quantification of N crop dynamics could be useful in order to enhance grain quality

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schierenbeck, M., Fleitas, M.C. & Simón, M.R. Nitrogen fertilization and fungicide mixtures in wheat: how do they affect the severity, yield and dynamics of nitrogen under leaf rust infections?. Eur J Plant Pathol 155, 1061–1075 (2019). https://doi.org/10.1007/s10658-019-01832-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01832-w

Keywords

Navigation