Glasshouse-specific occurrence of basal rot pathogens and the seasonal shift of Rhizoctonia solani anastomosis groups in lettuce

  • Jolien Claerbout
  • An Decombel
  • Anneleen Volckaert
  • Sofie Venneman
  • Isabel Vandevelde
  • Peter Bleyaert
  • Jenny Neukermans
  • Nicole Viaene
  • Monica HöfteEmail author
Original Article


Basal rot is a common disease in Belgian lettuce, which is mainly controlled by fungicides and chemical soil disinfestation. A seasonal appearance of the basal rot pathogens: Rhizoctonia solani, Sclerotinia spp., Botrytis cinerea and Pythium spp. has been reported, but lettuce growers use standard spraying schemes, irrespective of the occurrence of the pathogen. Due to stricter regulations and environmental concerns the superfluous use of fungicides should be omitted. We investigated if the use of fungicides could be reduced by only controlling the active pathogens. Therefore, lettuce was continuously grown in three glasshouses without any fungal disease control and the active pathogens causing basal rot were identified. The occurrence of basal rot pathogens appeared to be glasshouse specific and the different basal rot pathogens were active throughout the year. However, a seasonal appearance of R. solani anastomosis groups and Pythium spp. was observed with AG4-HGI and Pythium ultimum active at higher temperatures and AG2–1, AG-BI, AG1-IB and Pythium sylvaticum at lower temperatures. We report for the first time the isolation of AG-BI from infected plants. Each R. solani anastomosis group had its own optimal growth rate in vitro. Differences in pathogenicity between R. solani anastomosis groups were observed on detached leaves. AG1-IB and AG4-HGI were most pathogenic, followed by AG2–1 and AG-BI. These results show that the fungicide spraying scheme should be adapted to the occurring pathogens in the glasshouse. This information is of high importance in developing a sustainable control strategy for basal rot pathogens.


AG-BI Lactuca sativa Temperature dependence Pythium Botrytis cinerea Sclerotinia 



The authors wish to thank Ilse Delaere for her technical assistance. This research was funded by grant no. 140984 from the ‘Flanders Innovation & Entrepeneurship (VLAIO)’.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest (financial or non-financial).

Research involving human participants and/or animals

This research does not involve human participants and/or animals.

Informed consent

Not necessary, the research does not involve human participants

Supplementary material

10658_2019_1816_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 15.5 kb)
10658_2019_1816_MOESM2_ESM.docx (14 kb)
ESM 2 (DOCX 13.9 kb)


  1. Ajayi-Oyetunde, O. O., Butts-wilmsmeyer, C. J., & Bradley, C. A. (2017). Sensitivity of Rhizoctonia solani to succinate dehydrogenase inhibitor and demethylation inhibitor fungicides. Plant Disease, 101, 487–495.CrossRefPubMedGoogle Scholar
  2. Anguiz, R., & Martin, C. (1989). Anastomosis groups, pathogenicity and other characteristics of Rhizoctonia solani isolated from potatoes in Peru. Plant Disease, 73(3), 199–201.CrossRefGoogle Scholar
  3. Balali, G. R., Neate, S. M., Scott, E. S., & Whisson, D. L. (1995). Anastomosis group and pathogenicity of isolates of Rhizoctonia solani from potato crops in South Australia. Plant Pathology, 44(6), 1050–1057.CrossRefGoogle Scholar
  4. Blancard, D., Lot, H., & Maisonneuve, B. (2006). A color atlas of diseases of lettuce and related salad crops: Observation, biology and control. London: Elsevier.Google Scholar
  5. Blok, I., & Van der Plaats-Niterink, A. J. (1978). Pythium uncinulatum sp. nov. and P. tracheiphilum pathogenic to lettuce. Netherlands Journal of Plant Pathology, 84, 135–136.CrossRefGoogle Scholar
  6. Carling, D. E., & Leiner, R. H. (1990). Effect of temperature on virulence of Rhizoctonia solani and other Rhizoctonia on potato. Phytopathology, 80(10), 930–934.CrossRefGoogle Scholar
  7. Carling, D. E., Baird, R. E., Gitaitis, R. D., Brainard, K. A., & Kuninaga, S. (2002a). Characterization of AG-13, a newly reported anastomosis Group of Rhizoctonia solani. Phytopathology, 92(8), 893–899.CrossRefPubMedGoogle Scholar
  8. Carling, D. E., Kuninaga, S., & Brainard, K. a. (2002b). Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis Group-2 (AG-2) and AG-BI. Phytopathology, 92(1), 43–50.CrossRefGoogle Scholar
  9. Cubeta, M. A., & Vilgalys, R. (1997). Population biology of the Rhizoctonia solani complex. Phytopathology, 87(4), 480–484.CrossRefPubMedGoogle Scholar
  10. Davis, R. M., Subbarao, K. V., Raid, N. R., & Kurtz, E. A. (Eds.). (1997). Compendium of lettuce diseases. St. Paul: The American Phytopathological Society.Google Scholar
  11. Doornik, A. W. (1981). Temperature dependence of the pathogenicity of several isolates of Rhizoctonia solani in some bulb crops as an intrinsic property of the isolate. Netherlands Journal of Plant Pathology, 87(4), 139–147.CrossRefGoogle Scholar
  12. Gill, J. S., Sivasithamparam, K., & Smettem, K. R. J. (2000). Soil types with different texture affects development of Rhizoctonia root rot of wheat seedlings. Plant and Soil, 221, 113–120.CrossRefGoogle Scholar
  13. Grosch, R., & Kofoet, A. (2003). Influence of temperature, pH and inoculum densitiy on bottom rot on lettuce caused by Rhizoctonia solani. Journal of Plant Diseases and Protection, 110(4), 366–378.Google Scholar
  14. Grosch, R., Schneider, J. H. M., & Kofoet, A. (2004). Characterisation of Rhizoctonia solani anastomosis groups causing bottom rot in field-grown lettuce in Germany. European Journal of Plant Pathology, 110, 53–62.CrossRefGoogle Scholar
  15. Harikrishnan, R., & Yang, X. B. (2004). Recovery of anastomosis groups of Rhizoctonia solani from different latitudinal positions and influence of temperatures on their growth and survival. Plant Disease, 88(8), 817–823.CrossRefPubMedGoogle Scholar
  16. Herr, L. J. (1992). Characteristics of Rhizoctonia isolates associated with bottom rot of lettuce in organic soils in Ohio. Phytopathology, 82(10), 1046–1050.CrossRefGoogle Scholar
  17. Hua, G. K. H., & Höfte, M. (2015). The involvement of phenazines and cyclic lipopeptide sessilin in biocontrol of Rhizoctonia root rot on bean (Phaseolus vulgaris) by Pseudomonas sp. CMR12a is influenced by substrate composition. Plant and Soil, 388(1–2), 243–253.CrossRefGoogle Scholar
  18. Knudsen, I. M. B., Larsen, K. M., Jensen, D. F., & Hockenhull, J. (2002). Potential suppressiveness of different field soils to Pythium damping-off of sugar beet. Applied Soil Ecology, 21, 119–129.CrossRefGoogle Scholar
  19. Kooistra, T. (1983). Rhizoctonia solani as a component in the bottom rot complex of glasshouse lettuce. Wageningen: PhD. University of Wageningen.Google Scholar
  20. Kumar, S., Sivasithamparam, K., Gill, J. S., & Sweetingham, M. W. (1999). Temperature and water potential effects on growth and pathogenicity of Rhizoctonia solani AG-11 to lupin. Canadian Journal of Microbiology, 45, 389–395.Google Scholar
  21. Kuninaga, S., Natsuaki, T., Takeuchi, T., & Yokosawa, R. (1997). Sequence variation of the rDNA ITS regions within and between anastomosis groups in Rhizoctonia solani. Current Genetics, 32(3), 237–243.CrossRefPubMedGoogle Scholar
  22. Kuninaga, S., Yokosawa, R. & Ogoshi, A. (1979). Some properties of anastomosis group 6 and BI in Rhizoctonia solani Kühn. Annals of the phytopathology Society of Japan, 45, 207–214.Google Scholar
  23. Kuramae, E. E., Buzeto, A. L., Ciampi, M. B., & Souza, N. L. (2003). Identification of Rhizoctonia solani AG 1-IB in lettuce, AG 4 HG-I in tomato and melon, and AG 4 HG-III in broccoli and spinach, in Brazil. European Journal of Plant Pathology, 109, 391–395.CrossRefGoogle Scholar
  24. Li, G., Wang, D., Jiang, D., Huang, H. C., & Laroche, A. (2000). First report of Sclerotinia nivalis on lettuce in Central China. Mycological Research, 104, 232–237.CrossRefGoogle Scholar
  25. Mao, L., Wang, Q., Yan, D., Xie, H., Li, Y., Guo, M., & Cao, A. (2012). Evaluation of the combination of 1, 3-dichloropropene and dazomet as an efficient alternative to methyl bromide for cucumber production in China. Pest Management Science, 68, 602–609.CrossRefPubMedGoogle Scholar
  26. Naiki, T., & Ui, T. (1978). Ecological and morphological characteristics of the sclerotia of Rhizoctonia solani Kühn produced in soil. Soil Biology and Biochemistry, 10, 471–478.CrossRefGoogle Scholar
  27. Nordskog, B., Eikemo, H., Gauslaa, E., Le, V., Warmington, R., & Clarkson, J. (2014). Distribution and prevalence of Sclerotinia sclerotiorum and S. subarctica in Norwegian lettuce. Phytopathology, 104(11), 86.Google Scholar
  28. Ogoshi, A. (1987). Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kühn. Annual Review of Phytopathology, 25(1), 125–143.CrossRefGoogle Scholar
  29. Ritchie, E., Bain, R. A., & McQuilken, M. P. (2009). Effects of the nutrient status, temperature and pH on mycelial growth, sclerotial production and germination of Rhizoctonia solani from potato. Journal of Plant Pathology, 91(3), 589–596.Google Scholar
  30. Rojas, J. A., Jacobs, J. L., Napieralski, S., Karaj, B., Bradley, C. A., Chase, T., & Chilvers, M. I. (2017). Oomycete species associated with soybean seedlings in North America — Part I : Identification and pathogenicity characterization. Phytopathology, 107(3), 280–292.CrossRefGoogle Scholar
  31. Schneider, J. H. M., Schilder, M. T., & Dijst, G. (1997). Characterization of Rhizoctonia solani AG 2 isolates causing bare patch in field grown tulips in the Netherlands. European Journal of Plant Pathology, 103(3), 265–279.CrossRefGoogle Scholar
  32. Sharon, M., Kuninaga, S., Hyakumachi, M., & Sneh, B. (2006). The advancing identification and classification of Rhizoctonia spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience, 47(6), 299–316.CrossRefGoogle Scholar
  33. Sharon, M., Kuninaga, S., Hyakumachi, M., Naito, S., & Sneh, B. (2008). Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience, 49(2), 93–114.CrossRefGoogle Scholar
  34. Sneh, B., Jaboji-Hare, S., Neate, S., & Dijst, G. (1996). Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control. Dordrecht: Kluwer academic Publishers.Google Scholar
  35. Subbarao, K. V. (1998). Progress toward integrated management of lettuce drop. Plant Disease, 82(10), 1068–1078.CrossRefPubMedGoogle Scholar
  36. Thornton, C. R., Neill, T. M. O., Hilton, G., & Gilligan, C. A. (1999). Detection and recovery of Rhizoctonia solani in naturally infested glasshouse soils using a combined baiting, double monoclonal antibody ELISA. Plant Pathology, 48, 627–634.CrossRefGoogle Scholar
  37. Van Beneden, S., Pannecoucque, J., Debode, J., De Backer, G., & Höfte, M. (2009). Characterisation of fungal pathogens causing basal rot of lettuce in Belgian greenhouses. European Journal of Plant Pathology, 124, 9–19.CrossRefGoogle Scholar
  38. Van Beneden, S., Leenknegt, I., França, S. C., & Höfte, M. (2010). Improved control of lettuce drop caused by Sclerotinia sclerotiorum using Contans combined with lignin or a reduced fungicide application. Crop Protection, 29(2), 168–174.CrossRefGoogle Scholar
  39. Wareing, P. W., Wang, Z.-N., Coley-Smith, J. R., & Jeves, T. M. (1986). Fungal pathogens in rotted basal leaves in lettuce in Humberside and Lancashire with particular reference to Rhizoctonia solani. Plant Pathology, 35, 390–395.CrossRefGoogle Scholar
  40. Wei, L., Xue, A. G., Cober, E. R., Babcock, C., Zhang, J., Zhang, S., & Li, W. (2011). Pathogenicity of Pythium species causing seed rot and damping-off in soybean under controlled conditions. Phytoprotection, 91, 3–10.CrossRefGoogle Scholar
  41. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gefland, J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Jolien Claerbout
    • 1
    • 2
  • An Decombel
    • 3
  • Anneleen Volckaert
    • 4
  • Sofie Venneman
    • 5
  • Isabel Vandevelde
    • 5
  • Peter Bleyaert
    • 3
  • Jenny Neukermans
    • 4
  • Nicole Viaene
    • 2
    • 6
  • Monica Höfte
    • 1
    Email author
  1. 1.Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  2. 2.Plant, ILVO (Flanders research institute for agriculture, fisheries and food)MerelbekeBelgium
  3. 3.Inagro vzwRumbeke-BeitemBelgium
  4. 4.PCG (Provinciaal Proefcentrum voor de Groenteteelt Oost-Vlaanderen vzw)KruishoutemBelgium
  5. 5.PSKW (Proefstation voor de groenteteelt)Sint-Katelijne-WaverBelgium
  6. 6.Faculty of SciencesGhent UniversityGhentBelgium

Personalised recommendations