Skip to main content
Log in

Susceptibility of apple fruits (Malus x domestica Borkh.) to the postharvest pathogen Colletotrichum fioriniae: cultivar differences and correlation with fruit ripening characteristics

  • Original Article
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Colletotrichum spp. infections are an increasing threat to the fruit production industry worldwide, as a postharvest disease. Gaining knowledge on the susceptibility of apple fruit cultivars to Colletotrichum species is essential for specific breeding programs aiming to decrease the disease susceptibility of commercial apple cultivars. We investigated fruit susceptibility of nine apple cultivars at harvest and after storage, and studied the relationship of the susceptibility with fruit ripening characteristics. An accurate artificial inoculation technique, by wounding and injecting the spore suspension, was used to consistently follow-up the relative susceptibility symptoms of fruits. The nine apple cultivars studied, cvs. Pinova, Nicoter, Nicogreen, Golden Delicious, Gala, Elstar, Jonathan, Idared and Topaz, showed clear differences in susceptibility to C. fioriniae, main species causing problems in Europe, based on lesion expansion growth rate data. Cultivar Nicoter and Nicogreen were evaluated as less susceptible cultivars, while cv. Golden Delicious and cv. Pinova were classified as high susceptible cultivars. After three months of storage all fruit cultivars showed a higher susceptibility than at harvest. We further explored the link between fruit ripening characteristics and postharvest pathogen developments. Results showed significant higher Brix, ethylene production and respiration and significantly lower firmness and titratable acids after storage, with the extent of these changes being cultivar dependent. The ripening parameters respiration and Brix had a positive and the firmness a negative correlation with the lesion expansion growth rate of C. fioriniae after artificial wound inoculations. These experiments help to give a better insight in the susceptibility of different cultivars. Moreover, our data support the hypothesis that the extent of the necrotrophic fungal development depends on the fruit ripening stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrios, G. N. (2005). Plant pathology (5th ed. ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Alaniz, S., Hernandez, L., & Mondino, P. (2015). Colletotrichum fructicola is the dominant and one of the most aggressive species causing bitter rot of apple in Uruguay. Tropical Plant Pathology, 40, 265–274.

  • Alkan, N., Fortes, A.M. (2015). Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens. Frontiers in Plant Science, 6.

  • Baghat, R. G., Mehta, B. P., Patil, V. A., & Sharma, H. (2015). Screening of cultivars/varieties against mango anthracnose caused by Colletotrichum gloeosporioides. International Journal of Environmental and Agriculture research, 1, 21–23.

    Google Scholar 

  • Barkai-Golan, R. (2001). Postharvest diseases of fruits and vegetables- development and control (p. 418). Amsterdam: Elsevier Science.

    Google Scholar 

  • Baroncelli, R., Sreenivasaprasad, S., Thon, M. R., & Sukno, S. A. (2014). First report of apple bitter rot caused by Colletotrichum godetiae in the United Kingdom. Plant Disease, 98, 1000.

    CAS  PubMed  Google Scholar 

  • Baroncelli, R., Zapparata, A., Sarrocco, S., Sukno, S. A., Lane, C.R., Thon, M.R., Vannacci, G., Holub, E., Sreenivasaprasad, S. (2015). Molecular diversity of anthracnose pathogen populations associated with UK strawberry production suggests multiple introductions of three different Colletotrichum species. PLOS one. Available on: https://doi.org/10.1371/journal.pone.0129140, [13/07/2018].

    PubMed  PubMed Central  Google Scholar 

  • Biggs, A. R., & Miller, S. S. (2001). Relative susceptibility of selected apple cultivars to Colletotrichum acutatum. Plant Disease, 85, 657–660.

    CAS  PubMed  Google Scholar 

  • Børve, J., & Stensvand, A. (2015). Colletotrichum acutatum on apple in Norway. IOBC-WPRS Bulletin, 110, 151–157.

    Google Scholar 

  • Bulens, I., Van de Poel, B., Hertog, M., De Proft, M. P., Geeraerd, A. H., & Nicolaï, B. M. (2011). Protocol: An updated integrated methodology for analysis of metabolites and enzyme activities of ethylene biosynthesis. Plant Methods, 7, 17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum – Current status and future directions. Studies in Mycology, 73, 181–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Celetti, M. (2015). Bitter rot symptoms and management in apples during 2015. Geraadpleegd op 22 december 2018 via http://www.omafra.gov.on.ca/english/crops/hort/news/hortmatt/2015/14hrt15a1.html.

  • Crusius, L. U., Forcelini, C. A., Sanhueza, R. M. V., & Fernandes, J. M. C. (2002). Epidemiology of apple leaf spot. Fitopatologia Brasileira, 27, 65–70.

    Google Scholar 

  • Damm, U., Cannon, P. F., Woudenberg, J. H., & Crous, P. W. (2012). The Colletotrichum acutatum species complex. Studies in Mycology, 73, 37–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., & Di Pietro, A. (2012). The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414–430.

    PubMed  PubMed Central  Google Scholar 

  • DeLong, J. M., Prange, R. K., & Harrison, P. A. (1999). Using the Streif index as a final harvest window for controlled-atmosphere storage of apples. Horticultural Science, 13, 1251–1255.

    Google Scholar 

  • Demeyer R., De Baets T., de Schaetzen C., D’hooghe J., Keulemans W., Marchand F., Wustenberghs H. (2013). Duurzame fruitbedrijven: bepalende factoren – indicatoren – hot issues, Vlaamse overheid, Departement Landbouw- en Visserij, afdeling Monitoring en Studie, Brussel.

  • Dinh, S. Q., Chongwungse, J., Pongam, P., & Sangchote, S. (2003). Fruit infection by Colletotrichum gloeosporioides and anthracnose resistance of some mango cultivars in Thailand. Australian Plant Pathology, 32, 533–538.

  • Freeman, S., Katan, T., & Shabi, E. (1998). Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Disease, 82, 596–605.

    PubMed  Google Scholar 

  • Gonzales, E., Sutton, T. B., & Correll, J. C. (2006). Clarification of the etiology of Glomerella leaf spot and bitter rot of apple caused by Colletotrichum spp. based on morphology and genetic, molecular, and pathogenicity tests. Phytopathology, 96, 982–992.

    Google Scholar 

  • Gooday. (1995). Cell walls. In N. A. R. Gow & G. M. Gadd (Eds.), The growing fungus. London: Chapman and Hall.

    Google Scholar 

  • Grammen, A., Wenneker, M., Van Campenhout, J., Pham, K. T. K., Van Hemelrijck, W., Bylemans, D., Geeraerd, A., & Keulemans, W. (2019). Identification and pathogenicity assessment of Colletotrichum isolates causing bitter rot of apple fruit in Belgium. European Journal of Plant Pathology, 153, 47–63.

    Google Scholar 

  • Gwanpua, S. G., Van Buggenhout, S., Verlinden, B. E., Christiaens, S., Shpigelman, A., Vicent, V., Kermani, Z. J., Nicolai, B. M., Hendrickx, M., & Geeraerd, A. (2014). Pectin modifications and the role of pectin-degrading enymes during postharvest softening of Jonagold apples. Food Chemestry, 158, 283–291.

    CAS  Google Scholar 

  • Ivic, D., Voncina, D., Sever, Z., Simon, S., & Pejic, I. (2013). Identification of Colletotrichum species causing bitter rot of apple and pear in Croatia. Journal of Phytopathology, 161, 284–286.

    CAS  Google Scholar 

  • Jackson, J. E. (2003). Eating quality and its retention. In J. E. Jackson (Ed.), Biology of apples and pears (pp. 341–383). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jeffries, P., Dodd, J. C., Jeger, M. J., & Plumbey, R. A. (1990). The biology and control of Colletotrichum species on tropical fruit crops. Plant Pathology, 39, 343–366.

  • Johnston, J. W., Hewett, E. W., & Hertog, M. (2002). Postharvest softening of apple (Malus x domestica) fruit: A review. New Zealand Journal of Crop and Horticultural Science, 30, 145–160.

    Google Scholar 

  • Köhl, J., Wenneker, M., Groenenboom-de-haas, B. H., Anbergen, R., Goossen-van de Geijn, H. M., Lombaers-van der Plas, C. H., Pinto, F. A. M. F., & Kastelein, P. (2018). Dynamics of post-harvest pathogens Neofabraea spp. and Cadophora spp. in plant residues in Dutch apple and pear orchards. Plant Pathology, 67, 1264–1277.

  • Kou, L., Gaskins, V. L., Luo, Y., & Jurick, W. M., II. (2013). First report of Colletotrichum fioriniae causing postharvest decay on ‘Nittany’ apple fruit in the United States. Plant Disease, 98, 993.

    Google Scholar 

  • Moral, J., Xaviér, C. J., Viruega, J. R., Roca, L. F., Caballero, J., & Trapero, A. (2017). Frontiers in Plant Science, 8, 1892.

    PubMed  PubMed Central  Google Scholar 

  • Munda, A. (2014). First report of Colletotrichum fioriniae and C. godetiae causing apple rot in Slovenia. Plant Disease, 98, 1892.

    Google Scholar 

  • Munir, M., Amsden, B., Dixon, E., Vaillancourt, L., & Ward Gauthier, N. A. (2016). Characterization of Colletotrichum species causing bitter rot of apple in Kentucky orchards. Plant Disease, (11), 2194–2203.

  • Nath, P., Trivedi, P. K., Sane, V. A., & Sane, A. P. (2006). Role of ethylene in fruit ripening. In N. A. Khan (Ed.), Ethylene action in plants (pp. 151–184). Heidelberg: Springer.

    Google Scholar 

  • Neuwald, D. A., & Kittemann, D. (2016). The incidence of spp. in 'Pinova' apples can be reduced at elevated storage temperatures. Acta Hortic. 1144, 231-236. https://doi.org/10.17660/ActaHortic.2016.1144.34

  • Nodet, P., Baroncelli, R., Faugère, D., & Le Floch, G. (2016). First report of apple bitter rot caused by Colletotrichum fioriniae in Brittany, France. Plant Disease, 100, 1497.

    Google Scholar 

  • Nodet, P., Chalopin, M., Crété, X., Baroncelli, R., Le Floch, G. 2019. First report of Colletotrichum fructicola causing apple bitter rot in Europe. American Phytopathological Society https://doi.org/10.1094/PDIS-11-18-1915-PDN.

    Google Scholar 

  • Ozkaya, O., & Dundar, O. (2009). Influence of 1-methylcyclopropene (1-MCP) on 'Fuiji' apple quality during long-term storage. Journal of Food Agriculture and Environment, 7, 146–148.

    CAS  Google Scholar 

  • Paniagua, C., Posé, S., Morris, V.J., Kirby, A.R., Quesada, M.A., Mercado, J.A. 2014. Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomuc force microscopy. 114, 1375–1383.

  • Phoulivong, S., McKenzi, E. H. C., & Hyde, K. D. (2012). Cross infection of Colletotrichum species; a case study with tropical fruits. Current research in environmental and applied mycology, 2, 99–111.

  • Polashock, J. J., Ehlenfeldt, M. K., Stretch, A. W., & Kramer, M. (2005). Anthracnose fruit rot resistance in blueberry cultivars. Plant Disease, 89, 33–38.

    PubMed  Google Scholar 

  • Prusky, D. (1996). Pathogen quiescence in postharvest diseases. Annual Review of Phytopathology, 34, 413–434.

    CAS  PubMed  Google Scholar 

  • Prusky, D., & Lichter, A. (2007). Activation of quiescent infectionsby postharvest pathogens during transition from biotrophic to the necrotrophic stage. FEMS Microbiology Letters, 268, 1–8.

    CAS  PubMed  Google Scholar 

  • Prusky, D., Alkan, N., Mengiste, T., & Fluhr, R. (2013). Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annual Review of Phytopathology, 51, 55–76.

    Google Scholar 

  • Saquet, A. (2017). Storability of "Jonagold" apple fruit under extreme controlled atmosphere conditions. Journal of Agricultural Science and Technology B, 6, 262–268.

    Google Scholar 

  • SAS Institute Inc. (2013). Using JMP 11. Cary: SAS Institute Inc.

    Google Scholar 

  • Shangguan, I., Song, C., Leng, X., Kayesh, E., Sun, X., & Fang, J. (2014). Mining and comparison of the genes encoding the key enzymes involved in sugar biosynthesis in apple, grape and sweet orange. Scientia Horticulturae, 165, 311–318.

    CAS  Google Scholar 

  • Storch, T. T., Finatto, T., Bruneau, M., Orsel-Baldwin, M., Renou, J. P., Rombaldi, C. V., & Girardi, C. L. (2017). Contrasting transcriptional programs control postharvest development of apples (Malus x domestica Borkh.) submitted to cold storage and ethylene blockage. Journal of Agricultural and Food Chemistry, 65, 7813–7826.

    CAS  PubMed  Google Scholar 

  • Temiyakul, P., Taylor, P. W. J., & Mongkolporn, O. (2010). Development of a double inoculation method to assess resistance to anthracnose in trispecies Capsicum hybrid. Journal of Phytopathology, 158, 561–565.

  • Turechek, W. W. (2004). Apple diseases and their management. In S. A. M. H. Naqvi (Ed.), Diseases of fruits and vegetables (pp. 1–108). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Velho, A. C., Alaniz, S., Casanova, L., Mondino, P., & Stadnik, M. J. (2015). New insights into the characterization of Colletotrichum species associated with apple diseases in southern Brazil and Uruguay. Fungal Biology, 119, 229–244.

    PubMed  Google Scholar 

  • Vendrell, M., Dominguez-Puigjaner, E., & Llop-Tous, I. (2001). Climacteric versus non-climacteric physiology. Acta Horticulturae, (553), 345–349.

  • Wakasa, Y., Kudo, H., Ishikawa, R., Akada, S., Senda, M., Niizeki, M., & Harada, T. (2006). Low expression of an endopolygalacturonase gene in apple fruit with longterm storage potential. Postharvest Biology and Technology, 39, 193–198.

    CAS  Google Scholar 

  • Wenneker, M., Pham, K., Lemmers, M., de Boer, A., van der Lans, A., van Leeuwen, P., & Hollinger, T. (2016). First reports of Colletotrichum godetiae causing bitter rot on ‘Golden delicious’ apples in the Netherlands. Plant Disease, 100, 218.

    Google Scholar 

  • Wharton, P. S., & Diéguez-Uribeondo, J. (2004). The biology of Colletotrichum acutatum. Anales Del Jardin Bontanico de Madrid, 61, 3–22.

    Google Scholar 

  • Yahia, E. M. (2011). Postharvest biology and technology of tropical and subtropical fruits. 1: Fundamental issues. Woodhead: Cambridge.

    Google Scholar 

  • Zhu, Z., Liu, R., Li, B., & Tian, S. (2013). Characterisation of genes encoding key enzymes involved in sugar metabolism of apple fruit in controlled atmosphere storage. Food Chemistry, 141, 3323–3328.

    CAS  PubMed  Google Scholar 

  • Zucolata, M., Ku, K.M., Kim, M.J., Kushad, M. (2017). Influence of 1-methylcyclopropene treatment on postharvest quality of four scab (Venturia inequalis) resistant apple cultivars. Journal of Food Quality, 1–12.

Download references

Acknowledgments

The authors thank the Fund for Scientific Research (FWO) Flanders for providing funding for this research (grant number 1S44116N).

Funding

This study was funded by FWO (research foundation Flanders) Grant number: 1S44116N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Grammen.

Electronic supplementary material

Supplementary figure 1

Average number of lesions per fruit counted in time (days post inoculation, abbrev. DPI) after nebulizing intact fruits of nine different apple cultivars (Elstar, Gala, Golden Delicious, Idared, Jonathan, Nicogreen, Nicoter, Pinova and Topaz) with Colletotrichum fioriniae at harvest and after three months of storage at 2 °C ambient air in year 2. (PNG 1316 kb)

Supplementary figure 2

Average results (and standard deviation) of Brix (in %), firmness (in kg/cm2), titrable acids (in mg/mL) and LEGR of C. fioriniae (in mm/day) of nine apple cultivars (Elstar, Gala, Golden Delicious, Idared, Jonathan, Nicogreen, Nicoter, Pinova and Topaz) measured at harvest and after three months of storage in year 1. (JPG 1855 kb)

Supplementary figure 3

Average results of ethylene production (in nmol/kg.s) and LEGR of C. fioriniae (in mm/day) of nine apple cultivars (Elstar, Gala, Golden Delicious, Idared, Jonathan, Nicogreen, Nicoter, Pinova and Topaz) measured at harvest and after three months of storage in year 1. (JPG 1850 kb)

Supplementary figure 4

Average results of CO2 production (in nmol/kg.s), O2 consumption (in nmol/kg.s) and LEGR of C. fioriniae (in mm/day) of nine apple cultivars (Elstar, Gala, Golden Delicious, Idared, Jonathan, Nicogreen, Nicoter, Pinova and Topaz) measured at harvest and after three months of storage in year 1. (JPG 1806 kb)

Supplementary figure 5

Average results of Brix (in %), firmness (in kg/cm2), titrable acids (in mg/mL) and LEGR of C. fioriniae (in mm/day) of nine apple cultivars (Elstar, Gala, Golden Delicious, Idared, Jonathan, Nicogreen, Nicoter, Pinova and Topaz) measured at harvest and after three months of storage in year 2. (JPG 1887 kb)

Supplementary figure 6

Average results of ethylene production (in nmol/kg.s) and LEGR of C. fioriniae (in mm/day) of nine apple cultivars (Elstar, Gala, Golden Delicious, Idared, Jonathan, Nicogreen, Nicoter, Pinova and Topaz) measured at harvest and after three months of storage in year 2. (JPG 1670 kb)

Supplementary figure 7

Average results of CO2 production (in nmol/kg.s), O2 consumption (in nmol/kg.s) and LEGR of C. fioriniae (in mm/day) of nine apple cultivars (Elstar, Gala, Golden Delicious, Idared, Jonathan, Nicogreen, Nicoter, Pinova and Topaz) measured at harvest and after three months of storage in year 2. (JPG 1652 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grammen, A., Van Campenhout, J., Geeraerd, A. et al. Susceptibility of apple fruits (Malus x domestica Borkh.) to the postharvest pathogen Colletotrichum fioriniae: cultivar differences and correlation with fruit ripening characteristics. Eur J Plant Pathol 155, 801–816 (2019). https://doi.org/10.1007/s10658-019-01812-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01812-0

Keywords

Navigation