Skip to main content
Log in

Development and validation of a loop-mediated isothermal amplification technique (LAMP) for the detection of Spiroplasma citri, the causal agent of citrus stubborn disease

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Citrus stubborn disease (CSD) is caused by a Gram-positive bacterium, Spiroplasma citri, and is an endemic, but manageable, citrus disease. CSD-affected trees are low yielding but a key problem is that its symptoms are similar to and easily mistaken for Huanglongbing (HLB), a devastating citrus disease controlled by quarantine and eradication. Therefore, a rapid and simple test for S. citri is needed to readily distinguish CSD from HLB. To this end, a Loop-Mediated Isothermal Amplification technique (LAMP) was developed to detect S. citri, targeting the spiralin gene. The protocol was optimized for crude plant extracts from infected trees to allow on-site field testing. The LAMP assay showed high specificity to S. citri and detected DNA to a level of 100 fg/μl with no inhibition by crude plant extracts. Although the LAMP assay was 9 times less sensitive than qPCR with purified DNA templates, it performed well in field validations using a portable BioRanger device with citrus crude extracts. The LAMP assay showed detection efficiency and percentage yes/no calls similar to those obtained by real time PCR conducted with DNA extracted and purified from the same sample. The LAMP procedure allows growers, pest control or diagnostic services to rapidly test for S. citri in the field without a laboratory or DNA purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boubourakas, I. N., Fukuta, S., & Kyriakopoulou, P. E. (2009). Sensitive and rapid detection of peach latent mosaic viroid by the reverse transcription loop-mediated isothermal amplification. Journal of Virological Methods, 160(1), 63–68.

    Article  CAS  Google Scholar 

  • Bové, J. M. and Garnier, M. (2000). Stubborn. In: Timmer L. W., Garnsey S. M. and Graham H. J. (ed). Compendium of Citrus Diseases. American Phytopathological Society Press, St. Paul, 48–50.

  • Bové, J. M., Foissac, X., & Saillard, C. (1993). Spiralins. In Spiralins. In: (ed). Mycoplasma Cell Membranes (pp. 203–223). Springer.

  • Bühlmann, A., Pothier, J. F., Rezzonico, F., Smits, T. H., Andreou, M., Boonham, N., et al. (2013). Erwinia amylovora loop-mediated isothermal amplification (LAMP) assay for rapid pathogen detection and on-site diagnosis of fire blight. Journal of Microbiological Methods, 92(3), 332–339.

    Article  Google Scholar 

  • Chang, C. C., Chen, C. C., Wei, S. C., Lu, H. H., Liang, Y. H., & Lin, C. W. (2012). Diagnostic devices for isothermal nucleic acid amplification. Sensors, 12(6), 8319–8337.

    Article  CAS  Google Scholar 

  • Doyle, J. J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.

    Google Scholar 

  • Foissac, X., Saillard, C., Gandar, J., Zreik, L., & Bove, J. M. (1996). Spiralin polymorphism in strains of Spiroplasma citri is not due to differences in posttranslational palmitoylation. Journal of Bacteriology, 178(10), 2934–2940.

    Article  CAS  Google Scholar 

  • Harper, S. J., Ward, L., & Clover, G. R. G. (2010). Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology, 100(12), 1282–1288.

    Article  CAS  Google Scholar 

  • Jenkins, D. M., Kubota, R., Dong, J., Li, Y., & Higashiguchi, D. (2011). Handheld device for real-time, quantitative, LAMP-based detection of salmonella enterica using assimilating probes. Biosensors and Bioelectronics, 30(1), 255–260.

    Article  CAS  Google Scholar 

  • Johnson, A. A., Dasgupta, I., & Gopal, D. S. (2014). Development of loop-mediated isothermal amplification and SYBR green real-time PCR methods for the detection of Citrus yellow mosaic badnavirus in citrus species. Journal of Virological Methods, 203, 9–14.

    Article  Google Scholar 

  • Kaneko, H., Kawana, T., Fukushima, E., & Suzutani, T. (2007). Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. Journal of Biochemical and Biophysical Methods, 70(3), 499–501.

    Article  CAS  Google Scholar 

  • Keremane, M. L., Ramadugu, C., Rodriguez, E., Kubota, R., Shibata, S., Hall, D. G., Roose, M. L., Jenkins, D., & Lee, R. F. (2015). A rapid field detection system for citrus huanglongbing associated ‘Candidatus Liberibacter asiaticus’ from the psyllid vector, Diaphorina citri Kuwayama and its implications in disease management. Crop Protection, 68, 41–48.

    Article  Google Scholar 

  • Kogovšek, P., Hodgetts, J., Hall, J., Prezelj, N., Nikolić, P., Mehle, N., Lenarčič, R., Rotter, A., Dickinson, M., & Boonham, N. (2015). LAMP assay and rapid sample preparation method for on-site detection of flavescence dorée phytoplasma in grapevine. Plant Pathology, 64(2), 286–296.

    Article  Google Scholar 

  • Kubota, R., Alvarez, A. M., Su, W., & Jenkins, D. M. (2011). FRET-based assimilating probe for sequence-specific real-time monitoring of loop-mediated isothermal amplification (LAMP). Biological Engineering Transactions, 4(2), 81–100.

    Article  CAS  Google Scholar 

  • Lee, I. M., Bottner, K. D., Munyaneza, J. E., Davis, R. E., Crosslin, J. M., Du Toit, L. J., & Crosby, T. (2006). Carrot purple leaf: A new spiroplasmal disease associated with carrots in Washington state. Plant Disease, 90(8), 989–993.

    Article  CAS  Google Scholar 

  • Li, J., & Macdonald, J. (2015). Advances in isothermal amplification: Novel strategies inspired by biological processes. Biosensors and Bioelectronics, 64, 196–211.

    Article  CAS  Google Scholar 

  • Maheshwari, Y., Selvaraj, V., Hajeri, S., & Yokomi, R. (2017). Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR. PLoS One, 12(9), e0184751.

    Article  Google Scholar 

  • Mello, A. F. S., Yokomi, R. K., Payton, M. E., & Fletcher, J. (2010). Effect of citrus stubborn disease on navel orange production in a commercial orchard in California. Journal of Plant Pathology, 429–438.

  • Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63–e63.

    Article  CAS  Google Scholar 

  • Rigano, L. A., Marano, M. R., Castagnaro, A. P., Do Amaral, A. M., & Vojnov, A. A. (2010). Rapid and sensitive detection of Citrus bacterial canker by loop-mediated isothermal amplification combined with simple visual evaluation methods. BMC Microbiology, 10(1), 176.

    Article  Google Scholar 

  • Rigano, L. A., Malamud, F., Orce, I. G., Filippone, M. P., Marano, M. R., Do Amaral, A. M., et al. (2014). Rapid and sensitive detection of Candidatus Liberibacter asiaticus by loop mediated isothermal amplification combined with a lateral flow dipstick. BMC Microbiology, 14(1), 86.

    Article  Google Scholar 

  • Saglio, P., Lhospital, M., Lafleche, D., Dupont, G., Bové, J. M., Tully, J. G., & Freundt, E. A. (1973). Spiroplasma citri gen. And sp. n.: A mycoplasma-like organism associated with “stubborn” disease of citrus. International Journal of Systematic Bacteriology, 23(3), 191–204.

    Article  CAS  Google Scholar 

  • Shi, J., Pagliaccia, D., Morgan, R., Qiao, Y., Pan, S., Vidalakis, G., & Ma, W. (2014). Novel diagnosis for Citrus stubborn disease by detection of a Spiroplasma citri-secreted protein. Phytopathology, 104(2), 188–195.

    Article  CAS  Google Scholar 

  • Si Ammour, M., Bilodeau, G. J., Tremblay, D. M., Van Der Heyden, H., Yaseen, T., Varvaro, L., & Carisse, O. (2017). Development of real-time isothermal amplification assays for on-site detection of Phytophthora infestans in potato leaves. Plant Disease, PDIS–12-16-1780-RE.

  • Sillo, F., Giordano, L., & Gonthier, P. (2018). Fast and specific detection of the invasive forest pathogen Heterobasidion irregulare through a loop-mediated isothermal AMP lification (LAMP) assay. Forest Pathology, 48(2), e12396.

    Article  Google Scholar 

  • Tomita, N., Mori, Y., Kanda, H., & Notomi, T. (2008). Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols, 3(5), 877–882.

    Article  CAS  Google Scholar 

  • Tomlinson, J. A., Dickinson, M. J., & Boonham, N. (2010). Rapid detection of Phytophthora ramorum and P. kernoviae by two-minute DNA extraction followed by isothermal amplification and amplicon detection by generic lateral flow device. Phytopathology, 100(2), 143–149.

    Article  CAS  Google Scholar 

  • Tomlinson, J. A., Ostoja-Starzewska, S., Webb, K., Cole, J., Barnes, A., Dickinson, M., & Boonham, N. (2013). A loop-mediated isothermal amplification-based method for confirmation of Guignardia citricarpa in citrus black spot lesions. European Journal of Plant Pathology, 136(2), 217–224.

    Article  CAS  Google Scholar 

  • Varga, A., & James, D. (2006). Use of reverse transcription loop-mediated isothermal amplification for the detection of plum pox virus. Journal of Virological Methods, 138(1), 184–190.

    Article  CAS  Google Scholar 

  • Wang, H., & Turechek, W. W. (2016). A loop-mediated isothermal amplification assay and sample preparation procedure for sensitive detection of Xanthomonas fragariae in strawberry. PLoS One, 11(1), e0147122.

    Article  Google Scholar 

  • Wang, X., Doddapaneni, H., Chen, J., & Yokomi, R. K. (2015). Improved real-time PCR diagnosis of citrus stubborn disease by targeting prophage genes of Spiroplasma citri. Plant Disease, 99(1), 149–154.

    Article  CAS  Google Scholar 

  • Weisburg, W. G., Tully, J. G., Rose, D. L., Petzel, J. P., Oyaizu, H., Yang, D., Mandelco, L., Sechrest, J., Lawrence, T. G., & Van Etten, J. (1989). A phylogenetic analysis of the mycoplasmas: Basis for their classification. Journal of Bacteriology, 171(12), 6455–6467.

    Article  CAS  Google Scholar 

  • Yaseen, T., Drago, S., Valentini, F., Elbeaino, T., Stampone, G., Digiaro, M., & D'onghia, A. M. (2015). On-site detection of Xylella fastidiosa in host plants and in “spy insects” using the real-time loop-mediated isothermal amplification method. Phytopathologia Mediterranea, 54(3), 488–496.

    Google Scholar 

  • Yokomi, R.K. and Sisterson, M. (2011). Validation and comparison of a hierarchal sampling plan for estimating incidence of citrus stubborn disease. In: (ed). Proc. 18th conference of the InternationalOrganization of Citrus virologists.

  • Yokomi, R. K., Mello, A. F. S., Saponari, M., & Fletcher, J. (2008). Polymerase chain reaction-based detection of Spiroplasma citri associated with citrus stubborn disease. Plant Disease, 92(2), 253–260.

    Article  CAS  Google Scholar 

  • Yokomi, R. K., Mello, A. F., Fletcher, J. and Saponari, M. (2011). Estimation of citrus stubborn disease incidence in citrus groves by real-time PCR. In: (ed). Conference of International Organization of Citrus Virologists.

Download references

Acknowledgements

We thank Robert DeBorde of the United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA for technical assistance. We also thank Dr. R. Kubota and D. Jenkins (Diagenetix Inc., Honolulu, HI, USA) for providing the Bioranger device and helpful technical advice. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounira Inas Drais.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(FAS 2668 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drais, M.I., Maheshwari, Y., Selvaraj, V. et al. Development and validation of a loop-mediated isothermal amplification technique (LAMP) for the detection of Spiroplasma citri, the causal agent of citrus stubborn disease. Eur J Plant Pathol 155, 125–134 (2019). https://doi.org/10.1007/s10658-019-01755-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01755-6

Keywords

Navigation