Efficacy of vatica oil in controlling Aspergillus parasiticus in maize grain by direct contact and fumigation methods

  • Sawai BoukaewEmail author
  • Wanida Petlamul
  • Purawich Phitthayaphinant
  • Poonsuk PrasertsanEmail author


The objectives of the study were to test and compare the efficacy of essential oils and their derivatives for control of the aflatoxin-producing fungi Aspergillus parasiticus on contaminated maize grain. Among the five essential oils tested, vatica oil completely inhibited the growth and conidia germination of A. parasiticus TISTR 3276 by both methods. Benzyl acetate was also effective against the pathogen. The minimum inhibitory concentration of vatica oil and benzyl acetate against the fungal growth by direct contact was 10 μL mL−1 while it was 50 μL L−1 for the fumigation assay. Exposure to vatica oil at 10 μL mL−1 for 120 min could completely kill the conidia of the aflatoxin producing fungi while benzyl acetate showed antifungal activity but not rapid killing. SEM results illustrated that the direct contact method completely inhibited the conidia germination while the fumigation assay exhibited ultrastructure alterations of the conidia and abnormal growth of the fungal strain. Fumigation using vatica oil and benzyl acetate at their effective concentrations (10 μL mL−1 and 50 μL L−1, respectively) decreased the contamination of A. parasiticus TISTR 3276 on maize grain. Moreover, both vatica oil and benzyl acetate also protected and cured the contaminated maize grain. Thus, vatica essential oil and benzyl acetate have potential use in the control of aflatoxin producing fungi A. parasiticus.


Aspergillus parasiticus Vatica oil Benzyl acetate Direct contact Fumigation 



This research work was financially supported by the Agricultural Research Development Agency (Public Organization) (PRP5905021490) and Thailand Research Fund (RTA6080010).

Compliance with ethical standards

Conflict of interest

The authors declare having no conflict of interest.

Human and animal studies

This research did not involve human and/or animal participants.


  1. Avila-Sosa, R., Palou, E., Munguía, M. T. J., Nevárez-Moorillón, G. V., Cruz, A. R. N., & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153, 66–72.CrossRefGoogle Scholar
  2. Bernardos, A., Marina, T., Žácek, P., Pérez-Esteve, E., Martínez-Mañez, R., Lhotka, M., Kourimská, L., Pulkrábeka, J., & Kloucek, P. (2015). Antifungal effect of essential oil components against Aspergillus niger when loaded into silica mesoporous supports. Journal of the Science of Food and Agriculture, 95, 2824–2831.CrossRefGoogle Scholar
  3. Boukaew, S., & Prasertsan, P. (2014). Suppression of rice sheath blight disease using heat stable culture filtrate of Streptomyces philanthi RM-1-138. Crop Protection, 61, 1–10.CrossRefGoogle Scholar
  4. Boukaew, S., Prasertsan, P., & Sattayasamitsathit, S. (2017). Evaluation of antifungal activity of essential oils against aflatoxigenic Aspergillus flavus and their allelopathic activity from fumigation to protect maize seeds during storage. Industrial Crops and Products, 97, 558–566.CrossRefGoogle Scholar
  5. Cardiet, G., Fuzeau, B., Barreau, C., & Fleurat-Lessard, F. (2012). Contact and fumigant toxicity of some essential oil constituents against a grain insect pest Sitophilus oryzae and two fungi, Aspergillus westerdijkiae and Fusarium graminearum. Journal of Pest Science, 85, 351–358.CrossRefGoogle Scholar
  6. Dela Cueva, F., & Balendres, M. (2018). Efficacy of citronella essential oil for the management of chilli anthracnose. European Journal of Plant Pathology, 152, 461–468.CrossRefGoogle Scholar
  7. Dev, U., Devakumar, C., Mohan, J., & Agarwal, P. C. (2004). Antifungal activity of aroma chemicals against seed borne fungi. Journal of Essential Oil Research, 16, 496–499.CrossRefGoogle Scholar
  8. Doolotkeldieva, T. D. (2010). Microbiological control of flour-manufacture: dissemination of mycotoxins producing fungi in cereal products. Microbiology Insights, 3, 1–15.CrossRefGoogle Scholar
  9. dos Santos, N. S. T., Aguiar, A. J. A. A., de Oliveira, C. E. V., de Sales, C. V., de Meloe Silva, S., da Silva, R. S., Stamford, T. C. M., & de Souza, E. L. (2012). Efficacy of the application of a coating composed of chitosan and Origanum vulgare L. essential oil to control Rhizopus stolonifer and Aspergillus niger in grapes (Vitis Labrusca L.). Food Microbiology, 32, 345–353.CrossRefGoogle Scholar
  10. Gong, Y., Hounsa, A., Egal, S., Turner, P. C., Sutcliffe, A. E., Hall, A. J., Cardwell, K., & Wild, C. P. (2004). Post weaning exposure to aflatoxin results in impaired child growth: a longitudinal study in Benin, West Africa. Environmental Health Perspectives, 112, 1334–1338.CrossRefGoogle Scholar
  11. Guo, B. N. (2000). Control of preharvest aflatoxin contamination in corn: Fungus plant-insect interactions and control strategies. Recent Research Developments in Agricultural and Food Chemistry, 4, 165–176.Google Scholar
  12. Guterman, I., Masci, T., Chen, X., Negre, F., Pichersky, E., Dudareva, N., Weiss, D., & Vainstein, A. (2006). Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Molecular Biology, 60, 555–563.CrossRefGoogle Scholar
  13. Hua, H., Xing, F., Selvaraj, J. N., Wang, Y., Zhao, Y., Zhou, L., Liu, X., & Liu, Y. (2014). Inhibitory effect of essential oils on Aspergillus ochraceus growth and ochratoxinA production. PLoS ONE, 9(9), e108285.CrossRefGoogle Scholar
  14. Kedia, A., Prakash, B., Mishra, P. K., & Dubey, N. K. (2014). Antifungal and antiaflatoxigenic properties of Cuminum cyminum (L.) seed essential oil and its efficacy as a preservative in stored commodities. International Journal of Food Microbiology, 168–169, 1–7.CrossRefGoogle Scholar
  15. Kocic-Tanackov, S., Dimic, G., Tanackov, I., Pejin, D., Mojovic, L., & Pejin, J. (2012). The inhibitory effect of oregano extract on the growth of Aspergillus spp. and on sterigmatocystin biosynthesis. LWT- Food Science and Technology, 49, 14–20.CrossRefGoogle Scholar
  16. Kohiyama, C. Y., Ribeiro, M. M. Y., Mossini, S. A. G., Bando, E., da Silva Bomfim, N., Nerilo, S. B., Rocha, G. H. O., Grespan, R., Mikcha, J. M. G., & Machinski, M., Jr. (2015). Antifungal properties and inhibitory effects upon aflatoxin production of Thymus vulgaris L. by Aspergillus flavus Link. Food Chemistry, 173, 1006–1010.CrossRefGoogle Scholar
  17. Li, Q., Jiang, Y., Ning, P., Zheng, L., Huang, J., Li, G., Jiang, D., & Hsiang, T. (2011). Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1. Biological Control, 58, 139–148.CrossRefGoogle Scholar
  18. Li, W. R., Shi, Q. S., Ouyang, Y. S., Chen, Y. B., & Duan, S. S. (2013). Antifungal effects of citronella oil against Aspergillus niger ATCC 16404. Applied Microbiology and Biotechnology, 97, 7483–7492.CrossRefGoogle Scholar
  19. Li, Y., Kong, W., Li, M., Liu, H., Zhao, X., Yang, S., & Yang, M. (2016). Litsea cubeba essential oil as the potential natural fumigant: inhibition of Aspergillus flavus and AFB1 production in licorice. Industrial Crops and Products, 80, 186–193.CrossRefGoogle Scholar
  20. Manso, S., Cacho-Nerin, F., Becerril, R., & Nerín, C. (2013). Combined analytical and microbiological tools to study the effect on Aspergillus flavus of cinnamon essential oil contained in food packaging. Food Control, 30, 370–378.CrossRefGoogle Scholar
  21. Matusinsky, P., Zouhar, M., Pavela, R., & Novy, P. (2015). Antifungal effect of five essential oils against important pathogenic fungi of cereals. Industrial Crops and Products, 67, 208–215.CrossRefGoogle Scholar
  22. Nerilo, S. B., Rocha, G. H. O., Tomoike, C., Mossini, S. A. G., Grespan, R., Mikcha, J. M. G., & Machinski, M., Jr. (2016). Antifungal properties and inhibitory effects upon aflatoxin production by Zingiber officinale essential oil in Aspergillus flavus. International Journal of Food Science and Technology, 51, 286–292.CrossRefGoogle Scholar
  23. Ng'ang'a, J., Mutungi, C., Imathiu, S., & Affognon, H. (2016). Effect of triple-layer hermetic bagging on mould infection and aflatoxin contamination of maize during multi-month on-farm storage in Kenya. Journal of Stored Products Research, 69, 119–128.CrossRefGoogle Scholar
  24. Nidiry, E. S. J., & Babu, C. S. B. (2005). Antifungal activity of tuberose absolute and some of its constituents. Phytotherapy Research, 19, 447–449.CrossRefGoogle Scholar
  25. Omidbeygi, M., Barzegar, M., Hamidi, Z., & Naghdibadi, H. (2007). Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food Control, 18, 1518–1523.CrossRefGoogle Scholar
  26. Özcan, M., & Boyraz, N. (2000). Antifungal properties of some herb decoctions. European Food Research and Technology, 212, 86–88.CrossRefGoogle Scholar
  27. Passone, M. A., Girardi, N. S., & Etcheverry, M. (2012). Evaluation of the control ability of five essential oils against Aspergillus section Nigri growth and ochratoxinA accumulation in peanut meal extract agar conditioned at different water activities levels. International Journal of Food Microbiology, 159, 198–206.CrossRefGoogle Scholar
  28. Pérez-Alfonso, C. O., Martínez-Romero, D., Zapata, P. J., Serrano, M., Valero, D., & Castillo, S. (2012). The effects of essential oils carvacrol and thymol on growth of Penicillium digitatum and P. italicum involved in lemon decay. International Journal of Food Microbiology, 158, 101–106.CrossRefGoogle Scholar
  29. Pinto, E., Gonçalves, M. J., Hrimpeng, K., Pinto, J., Vaz, S., Vale-Silva, L. A., Cavaleiro, C., & Salgueiro, L. (2013). Antifungal activity of the essential oil of Thymus villosus subsp. lusitanicus against Candida, Cryptococcus, Aspergillus and dermatophyte species. Industrial Crops and Products, 51, 93–99.CrossRefGoogle Scholar
  30. Prakash, B., Singh, P., Kedia, A., & Dubey, N. K. (2012a). Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Research International, 49, 201–208.CrossRefGoogle Scholar
  31. Prakash, B., Singh, P., Mishra, P. K., & Dubey, N. K. (2012b). Safety assessment of Zanthoxylum alatum Roxb. essential oil, its antifungal, antiaflatoxin, antioxidant activity and efficacy as antimicrobial in preservation of Piper nigrum L. fruits. International Journal of Food Microbiology, 153, 183–191.CrossRefGoogle Scholar
  32. Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steubaurt, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4, 1457–1465.CrossRefGoogle Scholar
  33. Raguso, R. A., & Pichersky, E. (1995). Floral volatiles from Clarkia breweri and C. Concinna (Onagraceae): Recent evolution of floral scent and moth pollination. Plant Systematics and Evolution, 194, 55–67.CrossRefGoogle Scholar
  34. Rasooli, I., & Abyaneh, M. R. (2004). Inhibitory effects of Thyme oils on growth and aflatoxin production by Aspergillus parasiticus. Food Control, 15, 479–183.CrossRefGoogle Scholar
  35. Razzaghi-Abyaneh, M., Shams-Ghahfarokhi, M., Rezaee, M. B., Jaimand, K., Alinezhad, S., Saberi, R., & Yoshinari, T. (2009). Chemical composition and antiaflatoxigenic activity of Carumcarvi L., Thymus vulgaris and Citrus aurantifolia essential oils. Food Control, 20, 1018–1024.CrossRefGoogle Scholar
  36. Soylu, E. M., Soylu, S., & Kurt, S. (2006). Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia, 161, 119–128.CrossRefGoogle Scholar
  37. Stevic, T., Beric, T., Savikin, K., Sokovic, M., Godevac, D., Dimkic, I., & Stankovic, S. (2014). Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Industrial Crops and Products, 55, 116–122.CrossRefGoogle Scholar
  38. Sumalan, R. M., Alexa, E., & Poiana, A. M. (2013). Assessment of inhibitory potential of essential oils on natural mycoflora and Fusarium mycotoxins production in wheat. Chemistry Central Journal, 7, 1–12.CrossRefGoogle Scholar
  39. Tegegne, G., Pretorius, J. C., & Swart, W. J. (2008). Antifungal properties of Agapanthus africanus L. extracts against plant pathogens. Crop Protection, 27, 1052–1060.CrossRefGoogle Scholar
  40. Tian, J., Ban, X., Zeng, H., He, J., Huang, B., & Wang, Y. (2011). Chemical composition and antifungal activity of essential oil from Cicutavirosa L. var. latisecta Celak. International Journal of Food Microbiology, 145, 464–470.CrossRefGoogle Scholar
  41. Tian, J., Huang, B., Luo, X., Zeng, H., Ban, X., He, J., & Wang, Y. (2012). The control of Aspergillus flavus with Cinnamomum jensenianum Hand.-Mazz essential oil and its potential use as a food preservative. Food Chemistry, 130, 520–527.CrossRefGoogle Scholar
  42. Tian, J., Zeng, X., Feng, Z., Miao, X., Peng, X., & Wang, Y. (2014). Zanthoxylum molle Rehd. essential oil as a potential natural preservative in management of Aspergillus flavus. Industrial Crops and Products, 60, 151–159.CrossRefGoogle Scholar
  43. Tolouee, M., Alinezhad, S., Saberi, R., Eslamifar, A., Zad, S. J., Jaimand, K., Taeb, J., Rezaee, M. B., Kawachi, M., Shams-Ghahfarokhi, M., & Razzaghi-Abyaneh, M. (2000). Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem. International Journal of Food Microbiology, 139, 127–133.CrossRefGoogle Scholar
  44. Velázquez-Nuñez, M. J., Avila-Sosa, R., Palou, E., & López-Malo, A. (2013). Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition or vapor contact. Food Control, 31, 1–4.CrossRefGoogle Scholar
  45. Vilela, G. R., Almeida, G. S., Darce, M. A. B. R., Moraes, M. H. D., Brito, J. O., Silva, M. F. G. F., Silva, S. C., Piedade, S. M. S., Calori-Domingues, M. A., & Gloria, E. M. (2009). Activity of essential oil and its major compound, 1.8-cineole, from Eucalyptus globules Labill, against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. Journal of Stored Products Research, 45, 1–4.CrossRefGoogle Scholar
  46. Wenda-Piesik, A. (2011). Volatile organic compound emissions by winter wheat plants (Triticum aestivum L.) under Fusarium spp. infestation and various antibiotic conditions. Polish Journal of Environmental Studies, 20, 1335–1342.Google Scholar
  47. Yang, E. J., & Chang, H. C. (2010). Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. International Journal of Food Microbiology, 139, 56–63.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.College of Innovation and ManagementSongkhla Rajabhat UniversitySongkhlaThailand
  2. 2.Faculty of Technology and Community DevelopmentThaksin UniversityPhatthalungThailand
  3. 3.Research and Development OfficePrince of Songkla UniversitySongkhlaThailand

Personalised recommendations